mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[autoparallel] add split handler (#2032)
* [autoparallel] add split handler * add numerical test and runtime passes
This commit is contained in:
@@ -0,0 +1,270 @@
|
||||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import SplitHandler
|
||||
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
|
||||
|
||||
|
||||
class ConvSplitModel(nn.Module):
|
||||
|
||||
def __init__(self, split_size, split_dim):
|
||||
super().__init__()
|
||||
self.split_size = split_size
|
||||
self.split_dim = split_dim
|
||||
|
||||
def forward(self, input, other):
|
||||
conv_node = nn.functional.conv2d(input, other, bias=None)
|
||||
split_node = conv_node.split(self.split_size, dim=self.split_dim)
|
||||
return split_node
|
||||
|
||||
|
||||
class LinearSplitModel(nn.Module):
|
||||
|
||||
def __init__(self, split_size, split_dim):
|
||||
super().__init__()
|
||||
self.split_size = split_size
|
||||
self.split_dim = split_dim
|
||||
|
||||
def forward(self, input, other):
|
||||
linear_node = nn.functional.linear(input, other, bias=None)
|
||||
split_node = linear_node.split(self.split_size, dim=self.split_dim)
|
||||
return split_node
|
||||
|
||||
|
||||
def check_split_handler(rank, split_size, split_dim, model_cls, world_size, port):
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = model_cls(split_size=split_size, split_dim=split_dim).cuda()
|
||||
|
||||
if model_cls.__name__ == 'ConvSplitModel':
|
||||
input = torch.rand(8, 8, 66, 66).to('cuda')
|
||||
other = torch.rand(16, 8, 3, 3).to('cuda')
|
||||
# index of conv node in computation graph
|
||||
node_index = 2
|
||||
# total number of conv strategies
|
||||
strategy_number = 16
|
||||
if model_cls.__name__ == 'LinearSplitModel':
|
||||
input = torch.rand(8, 16, 64, 32).to('cuda')
|
||||
other = torch.rand(64, 32).to('cuda')
|
||||
# index of linear node in computation graph
|
||||
node_index = 2
|
||||
# total number of linear strategies
|
||||
strategy_number = 23
|
||||
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
numerical_test_for_node_strategy(model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input, other],
|
||||
meta_arg_names=['input', 'other'],
|
||||
node_type='following')
|
||||
tracer = ColoTracer()
|
||||
if model_cls.__name__ == 'ConvSplitModel':
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
|
||||
# %split : [#users=1] = call_method[target=split](args = (%conv2d,), kwargs = {})
|
||||
# return split
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(8, 8, 66, 66).to('meta'),
|
||||
"other": torch.rand(16, 8, 3, 3).to('meta'),
|
||||
})
|
||||
|
||||
if model_cls.__name__ == 'LinearSplitModel':
|
||||
# graph():
|
||||
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
|
||||
# %other : torch.Tensor [#users=1] = placeholder[target=other]
|
||||
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
|
||||
# %split : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {})
|
||||
# return split
|
||||
graph = tracer.trace(model,
|
||||
meta_args={
|
||||
"input": torch.rand(8, 16, 64, 32).to('meta'),
|
||||
"other": torch.rand(64, 32).to('meta'),
|
||||
})
|
||||
|
||||
gm = ColoGraphModule(model, graph)
|
||||
|
||||
previous_mod_node = list(graph.nodes)[2]
|
||||
split_node = list(graph.nodes)[3]
|
||||
split_strategies_vector = StrategiesVector(split_node)
|
||||
previous_strategies_vector = StrategiesVector(previous_mod_node)
|
||||
|
||||
# build handler
|
||||
if model_cls.__name__ == 'ConvSplitModel':
|
||||
|
||||
conv_handler = ConvFunctionHandler(node=previous_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=previous_strategies_vector)
|
||||
conv_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
||||
|
||||
if model_cls.__name__ == 'LinearSplitModel':
|
||||
assert len(previous_strategies_vector) == 0
|
||||
linear_handler = LinearFunctionHandler(node=previous_mod_node,
|
||||
device_mesh=device_mesh,
|
||||
strategies_vector=previous_strategies_vector)
|
||||
linear_handler.register_strategy(compute_resharding_cost=False)
|
||||
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
|
||||
|
||||
split_handler = SplitHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector)
|
||||
|
||||
split_handler.register_strategy(compute_resharding_cost=False)
|
||||
|
||||
# check operation data mapping
|
||||
mapping = split_handler.get_operation_data_mapping()
|
||||
|
||||
for name, op_data in mapping.items():
|
||||
op_data: OperationData
|
||||
# make sure they have valid values
|
||||
assert op_data.data is not None
|
||||
|
||||
if model_cls.__name__ == 'ConvSplitModel':
|
||||
assert mapping['input'].name == "conv2d"
|
||||
else:
|
||||
assert mapping['input'].name == "linear"
|
||||
assert mapping['input'].data.is_meta
|
||||
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
|
||||
assert mapping['input'].type == OperationDataType.ARG
|
||||
assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64])
|
||||
|
||||
assert mapping['output'].name == "split"
|
||||
split_items = torch.empty([8, 16, 64, 64]).split(split_size, split_dim)
|
||||
assert mapping['output'].logical_shape == tuple([item.shape for item in split_items])
|
||||
assert mapping['output'].type == OperationDataType.OUTPUT
|
||||
|
||||
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
|
||||
assert len(split_strategies_vector) == len(previous_strategies_vector)
|
||||
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
|
||||
for name in strategy_name_list:
|
||||
print(name)
|
||||
if model_cls.__name__ == 'ConvSplitModel':
|
||||
|
||||
if split_dim == 0:
|
||||
assert '[R, S1, R, R]_0' in strategy_name_list
|
||||
assert '[R, S0, R, R]_1' in strategy_name_list
|
||||
assert '[R, R, R, R]_2' in strategy_name_list
|
||||
assert '[R, R, R, R]_3' in strategy_name_list
|
||||
assert '[R, R, R, R]_4' in strategy_name_list
|
||||
assert '[R, R, R, R]_5' in strategy_name_list
|
||||
assert '[R, S1, R, R]_6' in strategy_name_list
|
||||
assert '[R, S0, R, R]_7' in strategy_name_list
|
||||
assert '[R, R, R, R]_8' in strategy_name_list
|
||||
assert '[R, R, R, R]_9' in strategy_name_list
|
||||
assert '[R, S0, R, R]_10' in strategy_name_list
|
||||
assert '[R, S1, R, R]_11' in strategy_name_list
|
||||
assert '[R, R, R, R]_12' in strategy_name_list
|
||||
assert '[R, R, R, R]_13' in strategy_name_list
|
||||
assert '[R, R, R, R]_14' in strategy_name_list
|
||||
assert '[R, S01, R, R]_15' in strategy_name_list
|
||||
|
||||
if split_dim == 1:
|
||||
assert '[S0, R, R, R]_0' in strategy_name_list
|
||||
assert '[S1, R, R, R]_1' in strategy_name_list
|
||||
assert '[S0, R, R, R]_2' in strategy_name_list
|
||||
assert '[S1, R, R, R]_3' in strategy_name_list
|
||||
assert '[S0, R, R, R]_4' in strategy_name_list
|
||||
assert '[S1, R, R, R]_5' in strategy_name_list
|
||||
assert '[R, R, R, R]_6' in strategy_name_list
|
||||
assert '[R, R, R, R]_7' in strategy_name_list
|
||||
assert '[R, R, R, R]_8' in strategy_name_list
|
||||
assert '[R, R, R, R]_9' in strategy_name_list
|
||||
assert '[R, R, R, R]_10' in strategy_name_list
|
||||
assert '[R, R, R, R]_11' in strategy_name_list
|
||||
assert '[R, R, R, R]_12' in strategy_name_list
|
||||
assert '[S01, R, R, R]_13' in strategy_name_list
|
||||
assert '[R, R, R, R]_14' in strategy_name_list
|
||||
assert '[R, R, R, R]_15' in strategy_name_list
|
||||
|
||||
if model_cls.__name__ == 'LinearSplitModel':
|
||||
|
||||
if split_dim == 0:
|
||||
assert '[R, R, R, S1]_0' in strategy_name_list
|
||||
assert '[R, S0, R, S1]_1' in strategy_name_list
|
||||
assert '[R, R, S0, S1]_2' in strategy_name_list
|
||||
assert '[R, R, R, S0]_3' in strategy_name_list
|
||||
assert '[R, S1, R, S0]_4' in strategy_name_list
|
||||
assert '[R, R, S1, S0]_5' in strategy_name_list
|
||||
assert '[R, R, R, R]_6' in strategy_name_list
|
||||
assert '[R, S0, R, R]_7' in strategy_name_list
|
||||
assert '[R, R, S0, R]_8' in strategy_name_list
|
||||
assert '[R, R, R, R]_9' in strategy_name_list
|
||||
assert '[R, S1, R, R]_10' in strategy_name_list
|
||||
assert '[R, R, S1, R]_11' in strategy_name_list
|
||||
assert '[R, R, R, S1]_12' in strategy_name_list
|
||||
assert '[R, R, R, S0]_13' in strategy_name_list
|
||||
assert '[R, R, R, R]_14' in strategy_name_list
|
||||
assert '[R, R, R, R]_15' in strategy_name_list
|
||||
assert '[R, R, R, S0]_16' in strategy_name_list
|
||||
assert '[R, R, R, S1]_17' in strategy_name_list
|
||||
assert '[R, R, R, R]_18' in strategy_name_list
|
||||
assert '[R, S01, R, R]_19' in strategy_name_list
|
||||
assert '[R, R, S01, R]_20' in strategy_name_list
|
||||
assert '[R, R, R, R]_21' in strategy_name_list
|
||||
assert '[R, R, R, S01]_22' in strategy_name_list
|
||||
|
||||
if split_dim == 1:
|
||||
assert '[S0, R, R, S1]_0' in strategy_name_list
|
||||
assert '[R, R, R, S1]_1' in strategy_name_list
|
||||
assert '[R, R, S0, S1]_2' in strategy_name_list
|
||||
assert '[S1, R, R, S0]_3' in strategy_name_list
|
||||
assert '[R, R, R, S0]_4' in strategy_name_list
|
||||
assert '[R, R, S1, S0]_5' in strategy_name_list
|
||||
assert '[S0, R, R, R]_6' in strategy_name_list
|
||||
assert '[R, R, R, R]_7' in strategy_name_list
|
||||
assert '[R, R, S0, R]_8' in strategy_name_list
|
||||
assert '[S1, R, R, R]_9' in strategy_name_list
|
||||
assert '[R, R, R, R]_10' in strategy_name_list
|
||||
assert '[R, R, S1, R]_11' in strategy_name_list
|
||||
assert '[R, R, R, S1]_12' in strategy_name_list
|
||||
assert '[R, R, R, S0]_13' in strategy_name_list
|
||||
assert '[R, R, R, R]_14' in strategy_name_list
|
||||
assert '[R, R, R, R]_15' in strategy_name_list
|
||||
assert '[R, R, R, S0]_16' in strategy_name_list
|
||||
assert '[R, R, R, S1]_17' in strategy_name_list
|
||||
assert '[S01, R, R, R]_18' in strategy_name_list
|
||||
assert '[R, R, R, R]_19' in strategy_name_list
|
||||
assert '[R, R, S01, R]_20' in strategy_name_list
|
||||
assert '[R, R, R, R]_21' in strategy_name_list
|
||||
assert '[R, R, R, S01]_22' in strategy_name_list
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
@parameterize('split_size', [2])
|
||||
@parameterize('split_dim', [0, 1, 2])
|
||||
@parameterize('model_cls', [ConvSplitModel, LinearSplitModel])
|
||||
def test_split_handler(split_size, split_dim, model_cls):
|
||||
world_size = 4
|
||||
run_func = partial(check_split_handler,
|
||||
split_size=split_size,
|
||||
split_dim=split_dim,
|
||||
model_cls=model_cls,
|
||||
world_size=world_size,
|
||||
port=free_port())
|
||||
mp.spawn(run_func, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_split_handler()
|
@@ -118,10 +118,15 @@ def numerical_test_for_node_strategy(model: torch.nn.Module,
|
||||
assert_close_helper(output, output_to_compare, strategy_index=strategy_index, type='forward output')
|
||||
|
||||
# backward result compare
|
||||
loss = output.sum()
|
||||
loss_to_compare = output_to_compare.sum()
|
||||
loss.backward()
|
||||
if isinstance(output, (tuple, list)):
|
||||
loss = output[0].sum()
|
||||
loss_to_compare = output_to_compare[0].sum()
|
||||
else:
|
||||
loss = output.sum()
|
||||
loss_to_compare = output_to_compare.sum()
|
||||
|
||||
loss_to_compare.backward()
|
||||
loss.backward()
|
||||
for key in grad_to_shard_dict.keys():
|
||||
grad_to_shard = grad_to_shard_dict[key]
|
||||
grad_to_compare = grad_to_compare_dict[key]
|
||||
@@ -157,6 +162,10 @@ def assert_close_helper(first: torch.Tensor,
|
||||
"""
|
||||
# average_diff_tensor = ((first - second)/(second+0.1)).sum()/second.numel()
|
||||
try:
|
||||
assert_close(first, second, rtol=rtol, atol=atol)
|
||||
if isinstance(first, (tuple, list)):
|
||||
for first_element, second_element in zip(first, second):
|
||||
assert_close(first_element, second_element, rtol=rtol, atol=atol)
|
||||
else:
|
||||
assert_close(first, second, rtol=rtol, atol=atol)
|
||||
except:
|
||||
print(f'strategy index {strategy_index} encounter assert_close error on {type}')
|
||||
|
Reference in New Issue
Block a user