[autoparallel] add split handler (#2032)

* [autoparallel] add split handler

* add numerical test and runtime passes
This commit is contained in:
YuliangLiu0306
2022-11-29 11:03:51 +08:00
committed by GitHub
parent 28aa9a4294
commit 0dbcd4a6f5
9 changed files with 500 additions and 22 deletions

View File

@@ -0,0 +1,270 @@
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler.experimental import SplitHandler
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_close, parameterize, rerun_if_address_is_in_use
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from colossalai.utils import free_port
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
class ConvSplitModel(nn.Module):
def __init__(self, split_size, split_dim):
super().__init__()
self.split_size = split_size
self.split_dim = split_dim
def forward(self, input, other):
conv_node = nn.functional.conv2d(input, other, bias=None)
split_node = conv_node.split(self.split_size, dim=self.split_dim)
return split_node
class LinearSplitModel(nn.Module):
def __init__(self, split_size, split_dim):
super().__init__()
self.split_size = split_size
self.split_dim = split_dim
def forward(self, input, other):
linear_node = nn.functional.linear(input, other, bias=None)
split_node = linear_node.split(self.split_size, dim=self.split_dim)
return split_node
def check_split_handler(rank, split_size, split_dim, model_cls, world_size, port):
disable_existing_loggers()
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = model_cls(split_size=split_size, split_dim=split_dim).cuda()
if model_cls.__name__ == 'ConvSplitModel':
input = torch.rand(8, 8, 66, 66).to('cuda')
other = torch.rand(16, 8, 3, 3).to('cuda')
# index of conv node in computation graph
node_index = 2
# total number of conv strategies
strategy_number = 16
if model_cls.__name__ == 'LinearSplitModel':
input = torch.rand(8, 16, 64, 32).to('cuda')
other = torch.rand(64, 32).to('cuda')
# index of linear node in computation graph
node_index = 2
# total number of linear strategies
strategy_number = 23
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
numerical_test_for_node_strategy(model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input, other],
meta_arg_names=['input', 'other'],
node_type='following')
tracer = ColoTracer()
if model_cls.__name__ == 'ConvSplitModel':
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
# %split : [#users=1] = call_method[target=split](args = (%conv2d,), kwargs = {})
# return split
graph = tracer.trace(model,
meta_args={
"input": torch.rand(8, 8, 66, 66).to('meta'),
"other": torch.rand(16, 8, 3, 3).to('meta'),
})
if model_cls.__name__ == 'LinearSplitModel':
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
# %split : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {})
# return split
graph = tracer.trace(model,
meta_args={
"input": torch.rand(8, 16, 64, 32).to('meta'),
"other": torch.rand(64, 32).to('meta'),
})
gm = ColoGraphModule(model, graph)
previous_mod_node = list(graph.nodes)[2]
split_node = list(graph.nodes)[3]
split_strategies_vector = StrategiesVector(split_node)
previous_strategies_vector = StrategiesVector(previous_mod_node)
# build handler
if model_cls.__name__ == 'ConvSplitModel':
conv_handler = ConvFunctionHandler(node=previous_mod_node,
device_mesh=device_mesh,
strategies_vector=previous_strategies_vector)
conv_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
if model_cls.__name__ == 'LinearSplitModel':
assert len(previous_strategies_vector) == 0
linear_handler = LinearFunctionHandler(node=previous_mod_node,
device_mesh=device_mesh,
strategies_vector=previous_strategies_vector)
linear_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, 'strategies_vector', previous_strategies_vector)
split_handler = SplitHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector)
split_handler.register_strategy(compute_resharding_cost=False)
# check operation data mapping
mapping = split_handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.data is not None
if model_cls.__name__ == 'ConvSplitModel':
assert mapping['input'].name == "conv2d"
else:
assert mapping['input'].name == "linear"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([8, 16, 64, 64])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([8, 16, 64, 64])
assert mapping['output'].name == "split"
split_items = torch.empty([8, 16, 64, 64]).split(split_size, split_dim)
assert mapping['output'].logical_shape == tuple([item.shape for item in split_items])
assert mapping['output'].type == OperationDataType.OUTPUT
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(split_strategies_vector) == len(previous_strategies_vector)
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
for name in strategy_name_list:
print(name)
if model_cls.__name__ == 'ConvSplitModel':
if split_dim == 0:
assert '[R, S1, R, R]_0' in strategy_name_list
assert '[R, S0, R, R]_1' in strategy_name_list
assert '[R, R, R, R]_2' in strategy_name_list
assert '[R, R, R, R]_3' in strategy_name_list
assert '[R, R, R, R]_4' in strategy_name_list
assert '[R, R, R, R]_5' in strategy_name_list
assert '[R, S1, R, R]_6' in strategy_name_list
assert '[R, S0, R, R]_7' in strategy_name_list
assert '[R, R, R, R]_8' in strategy_name_list
assert '[R, R, R, R]_9' in strategy_name_list
assert '[R, S0, R, R]_10' in strategy_name_list
assert '[R, S1, R, R]_11' in strategy_name_list
assert '[R, R, R, R]_12' in strategy_name_list
assert '[R, R, R, R]_13' in strategy_name_list
assert '[R, R, R, R]_14' in strategy_name_list
assert '[R, S01, R, R]_15' in strategy_name_list
if split_dim == 1:
assert '[S0, R, R, R]_0' in strategy_name_list
assert '[S1, R, R, R]_1' in strategy_name_list
assert '[S0, R, R, R]_2' in strategy_name_list
assert '[S1, R, R, R]_3' in strategy_name_list
assert '[S0, R, R, R]_4' in strategy_name_list
assert '[S1, R, R, R]_5' in strategy_name_list
assert '[R, R, R, R]_6' in strategy_name_list
assert '[R, R, R, R]_7' in strategy_name_list
assert '[R, R, R, R]_8' in strategy_name_list
assert '[R, R, R, R]_9' in strategy_name_list
assert '[R, R, R, R]_10' in strategy_name_list
assert '[R, R, R, R]_11' in strategy_name_list
assert '[R, R, R, R]_12' in strategy_name_list
assert '[S01, R, R, R]_13' in strategy_name_list
assert '[R, R, R, R]_14' in strategy_name_list
assert '[R, R, R, R]_15' in strategy_name_list
if model_cls.__name__ == 'LinearSplitModel':
if split_dim == 0:
assert '[R, R, R, S1]_0' in strategy_name_list
assert '[R, S0, R, S1]_1' in strategy_name_list
assert '[R, R, S0, S1]_2' in strategy_name_list
assert '[R, R, R, S0]_3' in strategy_name_list
assert '[R, S1, R, S0]_4' in strategy_name_list
assert '[R, R, S1, S0]_5' in strategy_name_list
assert '[R, R, R, R]_6' in strategy_name_list
assert '[R, S0, R, R]_7' in strategy_name_list
assert '[R, R, S0, R]_8' in strategy_name_list
assert '[R, R, R, R]_9' in strategy_name_list
assert '[R, S1, R, R]_10' in strategy_name_list
assert '[R, R, S1, R]_11' in strategy_name_list
assert '[R, R, R, S1]_12' in strategy_name_list
assert '[R, R, R, S0]_13' in strategy_name_list
assert '[R, R, R, R]_14' in strategy_name_list
assert '[R, R, R, R]_15' in strategy_name_list
assert '[R, R, R, S0]_16' in strategy_name_list
assert '[R, R, R, S1]_17' in strategy_name_list
assert '[R, R, R, R]_18' in strategy_name_list
assert '[R, S01, R, R]_19' in strategy_name_list
assert '[R, R, S01, R]_20' in strategy_name_list
assert '[R, R, R, R]_21' in strategy_name_list
assert '[R, R, R, S01]_22' in strategy_name_list
if split_dim == 1:
assert '[S0, R, R, S1]_0' in strategy_name_list
assert '[R, R, R, S1]_1' in strategy_name_list
assert '[R, R, S0, S1]_2' in strategy_name_list
assert '[S1, R, R, S0]_3' in strategy_name_list
assert '[R, R, R, S0]_4' in strategy_name_list
assert '[R, R, S1, S0]_5' in strategy_name_list
assert '[S0, R, R, R]_6' in strategy_name_list
assert '[R, R, R, R]_7' in strategy_name_list
assert '[R, R, S0, R]_8' in strategy_name_list
assert '[S1, R, R, R]_9' in strategy_name_list
assert '[R, R, R, R]_10' in strategy_name_list
assert '[R, R, S1, R]_11' in strategy_name_list
assert '[R, R, R, S1]_12' in strategy_name_list
assert '[R, R, R, S0]_13' in strategy_name_list
assert '[R, R, R, R]_14' in strategy_name_list
assert '[R, R, R, R]_15' in strategy_name_list
assert '[R, R, R, S0]_16' in strategy_name_list
assert '[R, R, R, S1]_17' in strategy_name_list
assert '[S01, R, R, R]_18' in strategy_name_list
assert '[R, R, R, R]_19' in strategy_name_list
assert '[R, R, S01, R]_20' in strategy_name_list
assert '[R, R, R, R]_21' in strategy_name_list
assert '[R, R, R, S01]_22' in strategy_name_list
@run_on_environment_flag(name='AUTO_PARALLEL')
@pytest.mark.dist
@rerun_if_address_is_in_use()
@parameterize('split_size', [2])
@parameterize('split_dim', [0, 1, 2])
@parameterize('model_cls', [ConvSplitModel, LinearSplitModel])
def test_split_handler(split_size, split_dim, model_cls):
world_size = 4
run_func = partial(check_split_handler,
split_size=split_size,
split_dim=split_dim,
model_cls=model_cls,
world_size=world_size,
port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_split_handler()

View File

@@ -118,10 +118,15 @@ def numerical_test_for_node_strategy(model: torch.nn.Module,
assert_close_helper(output, output_to_compare, strategy_index=strategy_index, type='forward output')
# backward result compare
loss = output.sum()
loss_to_compare = output_to_compare.sum()
loss.backward()
if isinstance(output, (tuple, list)):
loss = output[0].sum()
loss_to_compare = output_to_compare[0].sum()
else:
loss = output.sum()
loss_to_compare = output_to_compare.sum()
loss_to_compare.backward()
loss.backward()
for key in grad_to_shard_dict.keys():
grad_to_shard = grad_to_shard_dict[key]
grad_to_compare = grad_to_compare_dict[key]
@@ -157,6 +162,10 @@ def assert_close_helper(first: torch.Tensor,
"""
# average_diff_tensor = ((first - second)/(second+0.1)).sum()/second.numel()
try:
assert_close(first, second, rtol=rtol, atol=atol)
if isinstance(first, (tuple, list)):
for first_element, second_element in zip(first, second):
assert_close(first_element, second_element, rtol=rtol, atol=atol)
else:
assert_close(first, second, rtol=rtol, atol=atol)
except:
print(f'strategy index {strategy_index} encounter assert_close error on {type}')