mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-05 09:06:19 +00:00
[pipeline/fix-bug] num_microbatches support any integrate | stable chimera | launch tool for rpc pp framework (#1684)
* [pipeline/tuning] improve dispatch performance both time and space cost * [pipeline/converge] add interface for testing convergence * [NFC] polish colossalai/utils/multi_tensor_apply/multi_tensor_apply.py code style * Update PipelineBase.py * [pipeline/chimera] reconstruct PipelineBase and Worker to support more feasible custom schedule | finish Chimera * [pipeline/chimera] test chimera | fix bug of initializing * [pipeline/pytree] add pytree to process args and kwargs | provide to process args and kwargs after forward * [pipeline/fix-bug] num_microbatches support any integrate | stable chimera | launch tool for rpc pp framework
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
from typing import List, Callable, Dict
|
||||
import threading
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
@@ -81,7 +82,8 @@ class OneFOneBWorker(WorkerBase):
|
||||
# 2. forward times reach num_microbatches, this is the end of 1F1B mode
|
||||
if not is_last_stage and \
|
||||
target_key.phase == Phase.FORWARD:
|
||||
if target_key.microbatch_id == actual_stage_num - 1:
|
||||
if target_key.microbatch_id == actual_stage_num - 1 and num_microbatches > 2:
|
||||
# Why need num_microbatches > 2 ? Because there is no steady stage when num_microbatches <= 2
|
||||
outstanding_min = actual_stage_num - pp_rank - 1
|
||||
outstanding_max = actual_stage_num - pp_rank
|
||||
self.outstanding_range = (outstanding_min, outstanding_max)
|
||||
@@ -186,6 +188,19 @@ class ChimeraWorker(WorkerBase):
|
||||
# init group for chimera in ppg
|
||||
ppg.get_chimera_all_reduce_group(pp_rank)
|
||||
|
||||
# lock for step sync
|
||||
self.step_sync_lock = threading.Lock()
|
||||
self.step_sync_lock.acquire()
|
||||
|
||||
self.have_grad_lock = threading.Lock()
|
||||
self.have_grad_lock.acquire()
|
||||
|
||||
def _get_lock_gradient(self):
|
||||
self.have_grad_lock.acquire()
|
||||
grads = self.get_parameter_gradients()
|
||||
self.step_sync_lock.release()
|
||||
return grads
|
||||
|
||||
def is_first_stage(self):
|
||||
return (self.pp_rank % self.actual_stage_num) == 0
|
||||
|
||||
@@ -214,27 +229,22 @@ class ChimeraWorker(WorkerBase):
|
||||
return local_device_pp_ranks
|
||||
|
||||
def _hook_before_step(self):
|
||||
self.have_grad_lock.release()
|
||||
pp_rank = self.pp_rank
|
||||
|
||||
orders = self._get_step_order()
|
||||
step_index = orders.index(pp_rank)
|
||||
stage_num = self.actual_stage_num
|
||||
co_pp_rank = (pp_rank + stage_num) % (2 * stage_num)
|
||||
|
||||
# if currrent pp_rank is not the first to do step
|
||||
# wait its previous pp_rank finish step
|
||||
|
||||
all_reduce_group = ppg.get_chimera_all_reduce_group(self.pp_rank)
|
||||
grads = self.get_parameter_gradients()
|
||||
|
||||
# print(self.pp_rank, "begin all reduce", torch.cuda.max_memory_allocated(ppg.get_local_pp_rank()), torch.cuda.max_memory_reserved(ppg.get_local_pp_rank()))
|
||||
if step_index == 1:
|
||||
ppg.chimera_step_lock.acquire()
|
||||
|
||||
# print(f'rank_{self.pp_rank} before all reduce')
|
||||
dist.all_reduce_coalesced(grads, group=all_reduce_group, async_op=False)
|
||||
# print(f'rank_{self.pp_rank} after all reduce')
|
||||
|
||||
if step_index == 0:
|
||||
ppg.chimera_step_lock.release()
|
||||
# send
|
||||
co_worker = self.pp_rank_to_worker_rref[co_pp_rank]
|
||||
co_grads = co_worker.rpc_sync()._get_lock_gradient()
|
||||
# sync
|
||||
self.step_sync_lock.acquire()
|
||||
for i in range(len(grads)):
|
||||
grads[i] += co_grads[i]
|
||||
|
||||
|
||||
class ChimeraPipelineEngine(PipelineEngineBase):
|
||||
@@ -257,8 +267,8 @@ class ChimeraPipelineEngine(PipelineEngineBase):
|
||||
super().__init__(ChimeraWorker, partition_fn, stage_num, num_microbatches, device, use_1F1B, chunk, criterion,
|
||||
metric, checkpoint, data_process_func)
|
||||
|
||||
def _consume_constraint(self, microbatch_id: int, forward_only: bool, ret_future: Dict[PyRRef, List[Future]],
|
||||
input_pp_ranks: List[PyRRef], output_pp_ranks: List[PyRRef]):
|
||||
def _consume_constraint(self, microbatch_id: int, forward_only: bool, input_pp_ranks: List[int],
|
||||
output_pp_ranks: List[int], ret_future):
|
||||
pass
|
||||
|
||||
def _create_pp_rank_to_rpc_worker_id(self) -> None:
|
||||
|
Reference in New Issue
Block a user