[Inference] add logit processor and request handler (#5166)

* add logit processor and request handler

* add

* add

* add

* fix

* add search tokens and update func

* finish request handler

* add running list test

* fix test

* fix some bug

* add

* add

* fix bugs

* fix some bugs

* fix bug

* fix

* fix

* add copy fun

* del useless attn

* fix request status

---------

Co-authored-by: CjhHa1 <cjh18671720497outlook.com>
This commit is contained in:
Jianghai
2023-12-25 12:15:15 +08:00
committed by FrankLeeeee
parent 8daee26989
commit 0e616462a7
10 changed files with 463 additions and 66 deletions

View File

@@ -0,0 +1,62 @@
from typing import List, Tuple
import torch
def greedy_sample(
generation_config,
logprobs: torch.Tensor,
) -> torch.Tensor:
"""
Sample tokens greedyly.
"""
results = torch.argmax(logprobs, dim=-1).cpu()
return results
def multinomial_sample(
generation_config,
probs: torch.Tensor,
) -> torch.Tensor:
"""
Sample tokens in a random phase.
"""
max_best_of = generation_config.best_of
random_results = torch.multinomial(probs, num_samples=max_best_of, replacement=True).cpu()
return random_results
def beam_search_sample(
generation_config,
logprobs: torch.Tensor,
is_prompt: bool = False,
) -> List[Tuple[List[int], List[int]]]:
"""
Sample tokens with beam search.
We sample 2 * beam_width candidates to make sure that with high probability we can get `beam_width` candidates in addition to
the finished sequences for the next iteration.
ref:
https://github.com/tensorflow/tensor2tensor/blob/bafdc1b67730430d38d6ab802cbd51f9d053ba2e/tensor2tensor/utils/beam_search.py#L557-L563
for details. See also HF reference:
https://github.com/huggingface/transformers/blob/a4dd53d88e4852f023332d284ff07a01afcd5681/src/transformers/generation/utils.py#L3063-L3065
# NOTE: this beam search sample function is wrong now.
"""
beam_width = generation_config.best_of
results = []
if is_prompt:
# Prompt phase.
parent_ids = [0] * (2 * beam_width)
_, next_token_ids = torch.topk(logprobs[0], 2 * beam_width)
next_token_ids = next_token_ids.tolist()
else:
# Generation phase.
# cumulative_logprobs = [seq_data[seq_id].cumulative_logprob for seq_id in seq_ids]
cumulative_logprobs = torch.tensor(logprobs, dtype=torch.float, device=seq_group_logprobs.device)
seq_group_logprobs = seq_group_logprobs + cumulative_logprobs.unsqueeze(dim=1)
_, topk_ids = torch.topk(logprobs.flatten(), 2 * beam_width)
results.append((next_token_ids, parent_ids))
return results