[autoparallel] add tensor constructor handler (#2082)

This commit is contained in:
YuliangLiu0306
2022-12-06 10:20:10 +08:00
committed by GitHub
parent cdf537a648
commit 0e9db368ef
6 changed files with 171 additions and 2 deletions

View File

@@ -0,0 +1,66 @@
import torch
import torch.nn as nn
from colossalai.auto_parallel.tensor_shard.node_handler.tensor_constructor_handler import TensorConstructorHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.fx import ColoGraphModule, ColoTracer
class TensorConstructorModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
arange_node = torch.arange(x.size()[0])
x = x + arange_node
return x
def test_where_handler():
model = TensorConstructorModel()
tracer = ColoTracer()
# graph():
# %x : torch.Tensor [#users=2] = placeholder[target=x]
# %size : [#users=1] = call_method[target=size](args = (%x,), kwargs = {})
# %getitem : [#users=1] = call_function[target=operator.getitem](args = (%size, 0), kwargs = {})
# %arange : [#users=1] = call_function[target=torch.arange](args = (%getitem,), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%x, %arange), kwargs = {})
# return add
graph = tracer.trace(model, meta_args={
"x": torch.rand(10).to('meta'),
})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
arange_node = list(graph.nodes)[3]
strategies_vector = StrategiesVector(arange_node)
# build handler
handler = TensorConstructorHandler(node=arange_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['output'].name == "arange"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([10])
assert mapping['output'].type == OperationDataType.OUTPUT
handler.register_strategy(compute_resharding_cost=False)
strategy_name_list = [val.name for val in strategies_vector]
assert 'Replica Tensor Constructor' in strategy_name_list
if __name__ == '__main__':
test_where_handler()