mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-13 13:11:05 +00:00
rename trace_index to trace_indice
This commit is contained in:
586
colossalai/autochunk/trace_indice.py
Normal file
586
colossalai/autochunk/trace_indice.py
Normal file
@@ -0,0 +1,586 @@
|
||||
import copy
|
||||
|
||||
from .utils import (
|
||||
find_idx_by_name,
|
||||
get_node_shape,
|
||||
)
|
||||
|
||||
|
||||
class TraceIndice(object):
|
||||
def __init__(self, node_list) -> None:
|
||||
self.node_list = node_list
|
||||
self.idx_trace_list = self._init_idx_trace_list()
|
||||
self.idx_trace_equal = []
|
||||
self.idx_view_list = {}
|
||||
self.idx_count = -1
|
||||
|
||||
def _init_idx_trace_list(self):
|
||||
idx_trace_list = []
|
||||
for n in self.node_list:
|
||||
if get_node_shape(n) != None:
|
||||
cur_trace = {
|
||||
"idx": [None for _ in range(len(get_node_shape(n)))],
|
||||
"compute": [[] for _ in range(len(get_node_shape(n)))],
|
||||
"source": [{} for _ in range(len(get_node_shape(n)))],
|
||||
}
|
||||
else:
|
||||
cur_trace = {"idx": [], "compute": [], "source": []}
|
||||
idx_trace_list.append(cur_trace)
|
||||
return idx_trace_list
|
||||
|
||||
def _add_index(self):
|
||||
"""
|
||||
Update the count and return it. To record the idx number.
|
||||
|
||||
Returns:
|
||||
idx_count: int
|
||||
"""
|
||||
self.idx_count += 1
|
||||
return self.idx_count
|
||||
|
||||
def _del_dim(self, idx, dim_idx):
|
||||
self.idx_trace_list[idx]["idx"].pop(dim_idx)
|
||||
self.idx_trace_list[idx]["compute"].pop(dim_idx)
|
||||
self.idx_trace_list[idx]["source"].pop(dim_idx)
|
||||
|
||||
def _add_dim(self, node_idx, dim_idx):
|
||||
self.idx_trace_list[node_idx]["idx"].insert(dim_idx, self._add_index())
|
||||
self.idx_trace_list[node_idx]["compute"].insert(dim_idx, [])
|
||||
self.idx_trace_list[node_idx]["source"].insert(dim_idx, {})
|
||||
|
||||
def _transform_index(self, node, node_dim):
|
||||
node_idx = self._find_idx_trace_from_node(node)
|
||||
dims = list(range(len(node_idx)))
|
||||
return dims[node_dim]
|
||||
|
||||
def _inherit_index(self, node_from, node_from_dim, node_to, node_to_dim):
|
||||
node_from_dim = self._transform_index(node_from, node_from_dim)
|
||||
node_to_dim = self._transform_index(node_to, node_to_dim)
|
||||
node_from_trace = self._find_trace_from_node(node_from)
|
||||
node_to_trace = self._find_trace_from_node(node_to)
|
||||
node_to_trace["idx"][node_to_dim] = node_from_trace["idx"][node_from_dim]
|
||||
node_to_trace["compute"][node_to_dim] = copy.deepcopy(
|
||||
node_from_trace["compute"][node_from_dim]
|
||||
)
|
||||
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
|
||||
|
||||
def _inherit_all_computation(self, node_from, node_to):
|
||||
node_from_compute = self._find_compute_trace_from_node(node_from)
|
||||
node_to_compute = self._find_compute_trace_from_node(node_to)
|
||||
assert len(node_from_compute) == len(node_to_compute)
|
||||
for i in range(len(node_from_compute)):
|
||||
self._add_source(node_from, i, node_to, i)
|
||||
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
|
||||
|
||||
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
|
||||
node_from_dim = self._transform_index(node_from, node_from_dim)
|
||||
node_from_trace_source = self._find_source_trace_from_node(node_from)
|
||||
node_to_dim = self._transform_index(node_to, node_to_dim)
|
||||
node_to_trace_source = self._find_source_trace_from_node(node_to)
|
||||
node_from_idx = find_idx_by_name(node_from.name, self.node_list)
|
||||
if init:
|
||||
node_to_trace_source[node_to_dim] = {}
|
||||
# add dim to cur new source
|
||||
if node_from_idx not in node_to_trace_source[node_to_dim]:
|
||||
node_to_trace_source[node_to_dim][node_from_idx] = [node_from_dim]
|
||||
else:
|
||||
if node_from_dim not in node_to_trace_source[node_to_dim][node_from_idx]:
|
||||
node_to_trace_source[node_to_dim][node_from_idx].append(node_from_dim)
|
||||
# update inputs source
|
||||
for node_idx, node_dim in node_from_trace_source[node_from_dim].items():
|
||||
if node_idx not in node_to_trace_source[node_to_dim]:
|
||||
node_to_trace_source[node_to_dim][node_idx] = copy.deepcopy(node_dim)
|
||||
else:
|
||||
for d in node_dim:
|
||||
if d not in node_to_trace_source[node_to_dim][node_idx]:
|
||||
node_to_trace_source[node_to_dim][node_idx].append(d)
|
||||
|
||||
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
|
||||
if exclude == None:
|
||||
exclude = []
|
||||
else:
|
||||
exclude = [self._transform_index(node_to, i) for i in exclude]
|
||||
node_from_compute = self._find_compute_trace_from_node(node_from)
|
||||
node_to_compute = self._find_compute_trace_from_node(node_to)
|
||||
# assert len(node_from_compute) == len(node_to_compute)
|
||||
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
|
||||
if self._transform_index(node_to, i) in exclude:
|
||||
continue
|
||||
self._add_source(node_from, i, node_to, i)
|
||||
for j in node_from_compute[i]:
|
||||
if j not in node_to_compute[i]:
|
||||
node_to_compute[i].append(j)
|
||||
|
||||
def _mark_idx_equal(self, node1, dim1, node2, dim2):
|
||||
"""
|
||||
Mark 2 index to be equal.
|
||||
|
||||
Args:
|
||||
idx1 (int): index count.
|
||||
idx2 (int): index count.
|
||||
"""
|
||||
# node1_idx = _find_idx_by_name(node1.name, self.nodes_list)
|
||||
# node2_idx = _find_idx_by_name(node2.name, self.nodes_list)
|
||||
# if node1_idx > node2_idx:
|
||||
# self._add_source(node2, dim2, node1, dim1)
|
||||
# else:
|
||||
# self._add_source(node1, dim1, node2, dim2)
|
||||
|
||||
def _mark_computation(self, node, idx, dim):
|
||||
"""
|
||||
Mark some dims of node as computed.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
idx (int): node index
|
||||
dim (list or int): dims to be marked as computed
|
||||
"""
|
||||
if isinstance(dim, int):
|
||||
dim = [dim]
|
||||
dims = list(range(len(get_node_shape(node))))
|
||||
for d in dim:
|
||||
cur_dim = dims[d]
|
||||
if idx not in self.idx_trace_list[idx]["compute"][cur_dim]:
|
||||
self.idx_trace_list[idx]["compute"][cur_dim].append(idx)
|
||||
|
||||
def _find_trace_from_node(self, node):
|
||||
"""
|
||||
Find node idx and compute trace by the node.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
Returns:
|
||||
idx (list): idx of the node
|
||||
compute (list): computed idx of the node.
|
||||
"""
|
||||
node_idx = find_idx_by_name(node.name, self.node_list)
|
||||
node_dict = self.idx_trace_list[node_idx]
|
||||
return node_dict
|
||||
|
||||
def _find_source_trace_from_node(self, node):
|
||||
"""
|
||||
Find node source trace by the node.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
Returns:
|
||||
idx (list): idx of the node
|
||||
compute (list): computed idx of the node.
|
||||
"""
|
||||
node_idx = find_idx_by_name(node.name, self.node_list)
|
||||
node_dict = self.idx_trace_list[node_idx]
|
||||
return node_dict["source"]
|
||||
|
||||
def _find_idx_trace_from_node(self, node):
|
||||
"""
|
||||
Find node idx trace by the node.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
Returns:
|
||||
idx (list): idx of the node
|
||||
"""
|
||||
node_idx = find_idx_by_name(node.name, self.node_list)
|
||||
return self.idx_trace_list[node_idx]["idx"]
|
||||
|
||||
def _find_compute_trace_from_node(self, node):
|
||||
"""
|
||||
Find node compute trace by the node.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
Returns:
|
||||
compute (list): computed idx of the node.
|
||||
"""
|
||||
node_idx = find_idx_by_name(node.name, self.node_list)
|
||||
return self.idx_trace_list[node_idx]["compute"]
|
||||
|
||||
def _assign_index_as_input(self, node, node_idx, input_node=None):
|
||||
"""
|
||||
Assign node's trace as its input node.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
if input_node == None:
|
||||
input_node = node.args[0]
|
||||
input_node_idx = find_idx_by_name(input_node.name, self.node_list)
|
||||
input_node_idx_trace = self.idx_trace_list[input_node_idx]["idx"]
|
||||
|
||||
new_idx_trace = copy.deepcopy(input_node_idx_trace)
|
||||
self.idx_trace_list[node_idx]["idx"] = new_idx_trace
|
||||
|
||||
self._inherit_all_computation(input_node, node)
|
||||
|
||||
def _assign_all_index(self, node, node_idx):
|
||||
"""
|
||||
Add new index for all node's dims.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
shape = node.meta["tensor_meta"].shape
|
||||
new_trace = []
|
||||
for _ in shape:
|
||||
new_trace.append(self._add_index())
|
||||
self.idx_trace_list[node_idx]["idx"] = new_trace
|
||||
|
||||
def _assign_transpose_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for transpose op.
|
||||
1. swap input's dim according to transpose args
|
||||
2. inherit input's computation
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
input_node = node.args[0]
|
||||
tranpose_dim = node.args[1:]
|
||||
|
||||
self._assign_index_as_input(node, node_idx, input_node)
|
||||
self._inherit_index(input_node, tranpose_dim[1], node, tranpose_dim[0])
|
||||
self._inherit_index(input_node, tranpose_dim[0], node, tranpose_dim[1])
|
||||
|
||||
def _assign_permute_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for permute op.
|
||||
1. swap input's dim according to permute args
|
||||
2. inherit input's computation
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
permute_dim = node.args[1:]
|
||||
input_node = node.args[0]
|
||||
|
||||
self._assign_index_as_input(node, node_idx, input_node)
|
||||
for idx, d in enumerate(permute_dim):
|
||||
self._inherit_index(input_node, d, node, idx)
|
||||
|
||||
def _assign_linear_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for linear op.
|
||||
1. copy trace from input node and change last index accroding to weight
|
||||
2. mark equal for input node last index, weight first dim and bias dim.
|
||||
3. inherit input's computation, mark computation for last dim.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
if len(node.args) == 2:
|
||||
input_node, weight = node.args
|
||||
bias = None
|
||||
else:
|
||||
input_node, weight, bias = node.args
|
||||
|
||||
self._assign_index_as_input(node, node_idx)
|
||||
self._inherit_index(weight, 1, node, -1)
|
||||
|
||||
self._mark_computation(node, node_idx, [-1])
|
||||
self._mark_idx_equal(input_node, -1, weight, 0)
|
||||
|
||||
if bias:
|
||||
self._mark_idx_equal(input_node, -1, bias, 0)
|
||||
|
||||
def _assign_matmul_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for matmul op.
|
||||
1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length)
|
||||
2. mark equal for input matmul_left -1 index and matmul_right -2 dim.
|
||||
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
matmul_left, matmul_right = node.args
|
||||
|
||||
assert len(get_node_shape(matmul_left)) == len(get_node_shape(matmul_right))
|
||||
self._assign_index_as_input(node, node_idx, matmul_left)
|
||||
self._inherit_index(matmul_right, -1, node, -1)
|
||||
|
||||
self._mark_computation_from_node(matmul_right, node, [-1, -2])
|
||||
self._mark_computation(node, node_idx, [-1])
|
||||
self._mark_idx_equal(matmul_left, -1, matmul_right, -2)
|
||||
|
||||
def _assign_layernorm_index(self, node, idx):
|
||||
"""
|
||||
Assign index for layernorm op.
|
||||
1. assign index as input node
|
||||
2. inherit computation and mark last 2 dims as computed.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_index_as_input(node, idx)
|
||||
self._mark_computation(node, idx, [-1])
|
||||
|
||||
def _assign_elementwise_index(self, node, idx):
|
||||
"""
|
||||
Assign index for element-wise op (eg. relu sigmoid add mul).
|
||||
1. assign index as input node
|
||||
2. inherit computation from all input nodes.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_index_as_input(node, idx)
|
||||
nodes_in = []
|
||||
for node_in in node.args:
|
||||
if type(node_in) == type(node):
|
||||
nodes_in.append(node_in)
|
||||
self._mark_computation_from_node(node_in, node)
|
||||
assert len(nodes_in) <= 2
|
||||
if len(nodes_in) == 2:
|
||||
node_in0_shape = get_node_shape(nodes_in[0])
|
||||
node_in1_shape = get_node_shape(nodes_in[1])
|
||||
for i in range(-1, -min(len(node_in0_shape), len(node_in1_shape)) - 1, -1):
|
||||
if node_in0_shape[i] == node_in1_shape[i]:
|
||||
self._mark_idx_equal(nodes_in[0], i, nodes_in[1], i)
|
||||
|
||||
def _assgin_no_change_index(self, node, idx):
|
||||
self._assign_index_as_input(node, idx)
|
||||
for node_in in node.args:
|
||||
if type(node_in) == type(node):
|
||||
self._mark_computation_from_node(node_in, node)
|
||||
|
||||
def _assign_einsum_index(self, node, idx):
|
||||
"""
|
||||
Assign index for einsum op.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
patterns = node.args[0]
|
||||
input_nodes = node.args[1:]
|
||||
|
||||
patterns = patterns.replace(" ", "")
|
||||
left, right = patterns.split("->")
|
||||
left = left.split(",")
|
||||
|
||||
all_index = []
|
||||
for i in left:
|
||||
for c in i:
|
||||
all_index.append(c)
|
||||
all_index = set(all_index)
|
||||
free_index = set([i for i in right])
|
||||
sum_index = all_index - free_index
|
||||
|
||||
for right_idx, right_indice in enumerate(right):
|
||||
for left_idx, left_str in enumerate(left):
|
||||
if right_indice in left_str:
|
||||
source_idx = left_str.index(right_indice)
|
||||
self._inherit_index(
|
||||
input_nodes[left_idx], source_idx, node, right_idx
|
||||
)
|
||||
|
||||
# for i in sum_index:
|
||||
# for left_idx, left_str in enumerate(left):
|
||||
# if i in left_str:
|
||||
# self._mark_computation(node, idx, left_str.index(i))
|
||||
# break
|
||||
|
||||
def _assign_softmax_index(self, node, idx):
|
||||
"""
|
||||
Assign index for softmax op.
|
||||
1. assign index as input node
|
||||
2. inherit computation and mark softmax dim as computed.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_index_as_input(node, idx)
|
||||
self._mark_computation(node, idx, [node.kwargs["dim"]])
|
||||
|
||||
def _assign_unsqueeze_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for unsqueeze op.
|
||||
1. assign new index for unsqueeze dim
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._del_dim(node_idx, -1)
|
||||
self._assign_index_as_input(node, node_idx)
|
||||
self._add_dim(node_idx, node.args[1])
|
||||
|
||||
def _assign_dropout_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for unsqueeze op.
|
||||
1. assign new index for unsqueeze dim
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_index_as_input(node, node_idx)
|
||||
|
||||
def _assign_ones_like_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for oneslike op.
|
||||
1. assign new index for all dim
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
self._assign_all_index(node, node_idx)
|
||||
|
||||
def _assign_view_reshape_index(self, node, node_idx):
|
||||
"""
|
||||
Assign index for view and reshape op.
|
||||
1. get origin shape and target shape by meta info.
|
||||
2. compute the real value of -1 in target shape.
|
||||
3. determine changed dim, and assgin index for generated dim.
|
||||
4. log changed dim and generated dim for restore
|
||||
5. inherit computation.
|
||||
6. TODO: look into view list to see whether the view is associated with other,
|
||||
if so assgin equal dim according to previous view.
|
||||
|
||||
Args:
|
||||
node (node)
|
||||
node_idx (int)
|
||||
"""
|
||||
# get data, turn into number
|
||||
origin_node = node.args[0]
|
||||
origin_shape = origin_node.meta["tensor_meta"].shape
|
||||
target_shape = []
|
||||
for i in range(1, len(node.args)):
|
||||
if isinstance(node.args[i], int):
|
||||
target_shape.append(node.args[i])
|
||||
else:
|
||||
target_shape.append(node.args[i].meta["fwd_out"][0])
|
||||
|
||||
# compute the value of -1
|
||||
if -1 in target_shape:
|
||||
origin_product = 1
|
||||
for i in origin_shape:
|
||||
origin_product *= i
|
||||
target_product = -1
|
||||
for i in target_shape:
|
||||
target_product *= i
|
||||
shape_idx = target_shape.index(-1)
|
||||
target_shape[shape_idx] = origin_product // target_product
|
||||
|
||||
# determine changed dim
|
||||
len_diff = len(origin_shape) - len(target_shape)
|
||||
if len_diff == 1:
|
||||
# dim merge
|
||||
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
|
||||
dim_to = [dim_equal.index(False)]
|
||||
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
|
||||
self._add_dim(node_idx, -1)
|
||||
elif len_diff == -1:
|
||||
# dim expand
|
||||
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
|
||||
dim_from = [dim_equal.index(False)]
|
||||
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
|
||||
self._del_dim(node_idx, -1)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"shape"
|
||||
+ str(origin_shape)
|
||||
+ "and"
|
||||
+ str(target_shape)
|
||||
+ "view not implemented"
|
||||
)
|
||||
|
||||
# get new index
|
||||
origin_trace = self._find_idx_trace_from_node(origin_node)
|
||||
self._assign_index_as_input(node, node_idx, origin_node)
|
||||
dim_from.reverse()
|
||||
for i in dim_from:
|
||||
self._del_dim(node_idx, i)
|
||||
for i in dim_to:
|
||||
self._add_dim(node_idx, i)
|
||||
|
||||
# inherit computation
|
||||
compute_log = self._find_compute_trace_from_node(origin_node)
|
||||
for i in dim_from:
|
||||
if origin_trace[i] in compute_log:
|
||||
for j in dim_to:
|
||||
self._mark_computation(node, node_idx, [j])
|
||||
break
|
||||
|
||||
# log view, not used now
|
||||
view_dict = {
|
||||
"idx_from": [origin_trace[i] for i in dim_from],
|
||||
"dim_from": dim_from,
|
||||
"idx_to": [self.idx_trace_list[node_idx]["idx"][i] for i in dim_to],
|
||||
"dim_to": dim_to,
|
||||
}
|
||||
self.idx_view_list[node] = view_dict
|
||||
|
||||
def _merge_equal_idx(self):
|
||||
idx_equal = copy.deepcopy(self.idx_trace_equal)
|
||||
idx_equal.reverse()
|
||||
for idx in idx_equal:
|
||||
merge_to = min(idx)
|
||||
merge_from = max(idx)
|
||||
for trace in self.idx_trace_list:
|
||||
if merge_from in trace["idx"]:
|
||||
trace["idx"] = [
|
||||
merge_to if i == merge_from else i for i in trace["idx"]
|
||||
]
|
||||
|
||||
def trace_index(self):
|
||||
for idx, node in enumerate(self.node_list):
|
||||
if node.op == "placeholder":
|
||||
self._assign_all_index(node, idx)
|
||||
elif node.op == "call_method":
|
||||
if "transpose" in node.name:
|
||||
self._assign_transpose_index(node, idx)
|
||||
elif "permute" in node.name:
|
||||
self._assign_permute_index(node, idx)
|
||||
elif "view" in node.name or "reshape" in node.name:
|
||||
self._assign_view_reshape_index(node, idx)
|
||||
elif "unsqueeze" in node.name:
|
||||
self._assign_unsqueeze_index(node, idx)
|
||||
elif any(i in node.name for i in ["to", "contiguous"]):
|
||||
self._assgin_no_change_index(node, idx)
|
||||
else:
|
||||
raise NotImplementedError(node.name, "method not implemented yet!")
|
||||
elif node.op == "call_function":
|
||||
if "linear" in node.name:
|
||||
self._assign_linear_index(node, idx)
|
||||
elif "matmul" in node.name:
|
||||
self._assign_matmul_index(node, idx)
|
||||
elif "softmax" in node.name:
|
||||
self._assign_softmax_index(node, idx)
|
||||
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu"]):
|
||||
self._assign_elementwise_index(node, idx)
|
||||
elif "ones_like" in node.name:
|
||||
self._assign_ones_like_index(node, idx)
|
||||
elif "dropout" in node.name:
|
||||
self._assign_dropout_index(node, idx)
|
||||
elif "einsum" in node.name:
|
||||
self._assign_einsum_index(node, idx)
|
||||
elif "getattr" in node.name:
|
||||
continue # get attr like shape
|
||||
elif "getitem" in node.name:
|
||||
continue # get item in list
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
node.name, "function not implemented yet!"
|
||||
)
|
||||
elif node.op == "call_module":
|
||||
if any(n in node.name for n in ["layernorm", "norm"]):
|
||||
self._assign_layernorm_index(node, idx)
|
||||
else:
|
||||
raise NotImplementedError(node.name, "module not implemented yet!")
|
||||
elif node.op == "get_attr":
|
||||
self._assign_all_index(node, idx) # get param
|
||||
elif node.op == "output":
|
||||
continue
|
||||
else:
|
||||
raise NotImplementedError(node.op, "op not implemented yet!")
|
Reference in New Issue
Block a user