[autoparallel] find repeat blocks (#2854)

* [autoparallel] find repeat blocks

* polish

* polish

* polish
This commit is contained in:
YuliangLiu0306
2023-02-23 17:28:19 +08:00
committed by GitHub
parent 2e16f842a9
commit 0f392d7403
3 changed files with 229 additions and 3 deletions

View File

@@ -1,13 +1,16 @@
import copy
import operator
import warnings
from functools import reduce
from typing import Dict, List, Optional, Union
import torch
from torch.fx.node import Node
from torch.utils._pytree import tree_map
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
from torch.fx.node import Node
from ..constants import INFINITY_COST
@@ -18,7 +21,7 @@ def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: Devic
dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
"""
Generate the sharding spec of the tensor based on the given dim_partition_dict.
Args:
input_ (Union[Node, torch.Tensor]): the input can be a Node object or a PyTorch tensor. If a node is used, it will look for its meta data associated with this node.
@@ -59,7 +62,7 @@ def generate_resharding_costs(nodes: List[Node],
nodes (List[Node]): a list of nodes
sharding_spec_for_input(ShardingSpec): a list of ShardingSpec for the nodes.
count_backward (Optional[bool]): whether to include the cost of resharding in the backward pass, default is True. False can be used for inference.
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
'''
# The resharding_cost of weight is counted due to sharing weight cases.
resharding_costs = {}
@@ -88,3 +91,116 @@ def generate_resharding_costs(nodes: List[Node],
resharding_cost = INFINITY_COST
resharding_costs[input_node].append(resharding_cost)
return resharding_costs
def find_repeat_blocks(node_list: List[torch.fx.Node], root_module, common_length_threshold: int = 20):
'''
Find the largest repeat blocks in the graph, whose length is larger than the threshold.
Args:
gm (GraphModule): the graph module to be analyzed.
common_length_threshold (int): the threshold of the repeat block length.
'''
# graph = gm.graph
def _process_args(args):
new_args = []
for arg in args:
if hasattr(arg, '_meta_data'):
meta_data = arg._meta_data
else:
meta_data = arg
def _process_arg(data):
if isinstance(data, torch.Tensor):
data = data.size()
elif isinstance(data, slice):
data = (data.start, data.step, data.stop)
return data
new_meta_data = tree_map(_process_arg, meta_data)
new_args.append(new_meta_data)
return new_args
def _all_equal(check_list, check_fn):
base_value = check_list[-1]
for e in check_list:
if not check_fn(e, base_value):
return False
return True
def _check_node_list_equal(l1, l2):
if len(l1) != len(l2):
return False
for node1, node2 in zip(l1, l2):
if hash(node1.hash_key) != hash(node2.hash_key):
return False
return True
def _check_node_equal(node1, node2):
if hash(node1.hash_key) == hash(node2.hash_key):
return True
return False
for index, node in enumerate(node_list):
if node.op == 'call_module':
target = node.target
submod = root_module.get_submodule(target)
submod_type = type(submod)
target = submod_type
else:
target = node.target
new_args = _process_args(node.args)
if node.op != 'get_attr':
hash_key = (node.op, target, *new_args)
else:
hash_key = (node.op,)
setattr(node, 'hash_key', hash_key)
hash_value_to_node_dict = {}
for index, node in enumerate(node_list):
hash_value = hash(node.hash_key)
if hash_value not in hash_value_to_node_dict:
hash_value_to_node_dict[hash_value] = []
hash_value_to_node_dict[hash_value].append(index)
# node_list = list(graph.nodes)
node_list_start = 0
max_common_length = common_length_threshold
common_blocks_index = []
for index, node in enumerate(node_list):
# the comparison will be triggered if a common node appears
if len(hash_value_to_node_dict[hash(node.hash_key)]) >= 2:
start_index_list = hash_value_to_node_dict[hash(node.hash_key)]
check_block_list = [node_list[start:start + max_common_length] for start in start_index_list]
common_label = True
if not _all_equal(check_block_list, _check_node_list_equal):
common_label = False
if common_label:
common_blocks_index = copy.deepcopy(start_index_list)
max_step = len(node_list) - common_blocks_index[-1] - max_common_length - 1
for i in range(max_step):
# add assertion to avoid out of index
next_node_list = [node_list[index + max_common_length + i] for index in start_index_list]
if not _all_equal(next_node_list, _check_node_equal):
max_step = i
break
max_common_length += max_step
node_list_start += max_common_length
# recover common subgraph from the index
common_blocks = []
for start in common_blocks_index:
common_blocks.append(node_list[start:start + max_common_length])
return common_blocks