[autoparallel] find repeat blocks (#2854)

* [autoparallel] find repeat blocks

* polish

* polish

* polish
This commit is contained in:
YuliangLiu0306
2023-02-23 17:28:19 +08:00
committed by GitHub
parent 2e16f842a9
commit 0f392d7403
3 changed files with 229 additions and 3 deletions

View File

@@ -0,0 +1,110 @@
from typing import Optional, Tuple
import torch
import torch.nn as nn
from torch.fx import GraphModule
from transformers.pytorch_utils import Conv1D
from colossalai.auto_parallel.tensor_shard.utils.factory import find_repeat_blocks
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.testing import parameterize
from colossalai.testing.pytest_wrapper import run_on_environment_flag
NUM_REPEAT_BLOCKS = 4
BATCH_SIZE = 1
SEQ_LENGTH = 32
HIDDEN_DIM = 384
class RepeatBlock(nn.Module):
def __init__(self, intermediate_size, hidden_size):
super().__init__()
self.c_fc = Conv1D(intermediate_size, hidden_size)
self.c_proj = Conv1D(hidden_size, intermediate_size)
self.act = torch.nn.ReLU()
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states
class RepeatModel(nn.Module):
def __init__(self, intermediate_size, hidden_size, num_layers):
super().__init__()
self.blocks = nn.ModuleList([RepeatBlock(intermediate_size, hidden_size) for i in range(num_layers)])
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class NonRepeatBlock(nn.Module):
def __init__(self, intermediate_size, hidden_size, layer_index):
super().__init__()
intermediate_size //= (layer_index + 1)
self.c_fc = Conv1D(intermediate_size, hidden_size)
self.c_proj = Conv1D(hidden_size, intermediate_size)
self.act = torch.nn.ReLU()
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states
class NonRepeatModel(nn.Module):
def __init__(self, intermediate_size, hidden_size, num_layers):
super().__init__()
self.blocks = nn.ModuleList([NonRepeatBlock(intermediate_size, hidden_size, i) for i in range(num_layers)])
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
@run_on_environment_flag(name='AUTO_PARALLEL')
@parameterize('model_cls', [RepeatModel, NonRepeatModel])
def test_repeat_blocks(model_cls):
model = model_cls(4 * HIDDEN_DIM, HIDDEN_DIM, NUM_REPEAT_BLOCKS)
tracer = ColoTracer()
input_sample = {'x': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta')}
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
gm.recompile()
node_list = list(graph.nodes)
root_module = graph.owning_module
common_blocks = find_repeat_blocks(node_list, root_module, common_length_threshold=10)
total_num_nodes = len(list(graph.nodes))
# remove the input placeholder node and the output node
num_repeat_nodes_per_block = (total_num_nodes - 2) // NUM_REPEAT_BLOCKS
for common_block in common_blocks:
print(common_block)
if model_cls == RepeatModel:
assert len(common_blocks) == NUM_REPEAT_BLOCKS
assert len(common_blocks[0]) == num_repeat_nodes_per_block
elif model_cls == NonRepeatModel:
assert len(common_blocks) == 0
if __name__ == '__main__':
test_repeat_blocks()