mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-07 20:10:17 +00:00
Fixed docstring in colossalai (#171)
This commit is contained in:
@@ -38,7 +38,7 @@ class CosineAnnealingLR(_CosineAnnealingLR):
|
||||
|
||||
:param optimizer: Wrapped optimizer
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param total_steps: number of total training steps
|
||||
:param total_steps: Number of total training steps
|
||||
:type total_steps: int
|
||||
:param eta_min: Minimum learning rate, defaults to 0
|
||||
:type eta_min: int, optional
|
||||
@@ -56,9 +56,9 @@ class CosineAnnealingWarmupLR(WarmupScheduler):
|
||||
|
||||
:param optimizer: Wrapped optimizer
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param total_steps: number of total training steps
|
||||
:param total_steps: Number of total training steps
|
||||
:type total_steps: int
|
||||
:param warmup_steps: number of warmup steps, defaults to 0
|
||||
:param warmup_steps: Number of warmup steps, defaults to 0
|
||||
:type warmup_steps: int, optional
|
||||
:param eta_min: Minimum learning rate, defaults to 0
|
||||
:type eta_min: int, optional
|
||||
@@ -78,9 +78,9 @@ class FlatAnnealingLR(DelayerScheduler):
|
||||
|
||||
:param optimizer: Wrapped optimizer
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param total_steps: number of total training steps
|
||||
:param total_steps: Number of total training steps
|
||||
:type total_steps: int
|
||||
:param pct_start: percent of steps before starting learning rate decay
|
||||
:param pct_start: Percent of steps before starting learning rate decay
|
||||
:type pct_start: float
|
||||
:param last_epoch: The index of last epoch, defaults to -1
|
||||
:type last_epoch: int, optional
|
||||
@@ -99,15 +99,16 @@ class FlatAnnealingLR(DelayerScheduler):
|
||||
|
||||
@LR_SCHEDULERS.register_module
|
||||
class FlatAnnealingWarmupLR(WarmupDelayerScheduler):
|
||||
"""Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be applied, and then the learning rate will be a fixed value before starting decay.
|
||||
"""Flat and cosine annealing learning rate scheduler with learning rate warmup. A linear warmup schedule will be
|
||||
applied, and then the learning rate will be a fixed value before starting decay.
|
||||
|
||||
:param optimizer: Wrapped optimizer
|
||||
:type optimizer: torch.optim.Optimizer
|
||||
:param total_steps: number of total training steps
|
||||
:param total_steps: Number of total training steps
|
||||
:type total_steps: int
|
||||
:param warmup_steps: number of warmup steps, defaults to 0
|
||||
:param warmup_steps: Number of warmup steps, defaults to 0
|
||||
:type warmup_steps: int, optional
|
||||
:param pct_start: percent of steps before starting learning rate decay
|
||||
:param pct_start: Percent of steps before starting learning rate decay
|
||||
:type pct_start: float
|
||||
:param eta_min: Minimum learning rate, defaults to 0
|
||||
:type eta_min: int, optional
|
||||
|
Reference in New Issue
Block a user