Layer integration (#83)

* integrated parallel layers for ease of building models

* integrated 2.5d layers

* cleaned codes and unit tests

* added log metric by step hook; updated imagenet benchmark; fixed some bugs

* reworked initialization; cleaned codes

Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
アマデウス
2021-12-27 15:04:32 +08:00
committed by GitHub
parent 5c3843dc98
commit 0fedef4f3c
118 changed files with 4941 additions and 8116 deletions

View File

@@ -1,15 +1,12 @@
from ._base_hook import BaseHook
from ._checkpoint_hook import SaveCheckpointHook, LoadCheckpointHook
from ._metric_hook import (LossHook, Accuracy2DHook, AccuracyHook, MetricHook,
Accuracy1DHook, Accuracy2p5DHook, Accuracy3DHook)
from ._log_hook import LogMetricByEpochHook, TensorboardHook, LogTimingByEpochHook, LogMemoryByEpochHook
from ._checkpoint_hook import LoadCheckpointHook, SaveCheckpointHook
from ._log_hook import (LogMemoryByEpochHook, LogMetricByEpochHook, LogMetricByStepHook, LogTimingByEpochHook,
TensorboardHook)
from ._lr_scheduler_hook import LRSchedulerHook
from ._metric_hook import AccuracyHook, LossHook, MetricHook, ThroughputHook
__all__ = [
'BaseHook', 'MetricHook',
'LoadCheckpointHook', 'SaveCheckpointHook',
'LossHook', 'AccuracyHook', 'Accuracy2DHook',
'Accuracy1DHook', 'Accuracy2p5DHook', 'Accuracy3DHook',
'LogMetricByEpochHook', 'TensorboardHook', 'LogTimingByEpochHook', 'LogMemoryByEpochHook',
'LRSchedulerHook'
'BaseHook', 'MetricHook', 'LoadCheckpointHook', 'SaveCheckpointHook', 'LossHook', 'AccuracyHook',
'LogMetricByEpochHook', 'TensorboardHook', 'LogTimingByEpochHook', 'LogMemoryByEpochHook', 'LRSchedulerHook',
'ThroughputHook', 'LogMetricByStepHook'
]

View File

@@ -16,11 +16,11 @@ from colossalai.utils import report_memory_usage, is_dp_rank_0, \
from ._base_hook import BaseHook
def _format_number(val):
def _format_number(val, prec=5):
if isinstance(val, float):
return f'{val:.5g}'
return f'{val:.{prec}g}'
elif torch.is_tensor(val) and torch.is_floating_point(val):
return f'{val.item():.5g}'
return f'{val.item():.{prec}g}'
return val
@@ -37,6 +37,24 @@ class LogByEpochHook(BaseHook):
return trainer.cur_epoch % self._interval == 0
@HOOKS.register_module
class LogMetricByStepHook(BaseHook):
def __init__(self, priority: int = 10):
super().__init__(priority)
def after_train_iter(self, trainer, *args):
trainer.states['step_metrics'] = dict()
for metric_name, metric_calculator in trainer.states['metrics']['train'].items():
trainer.states['step_metrics'][metric_name.lower()] = \
f'{_format_number(metric_calculator.get_last_step_value())}'
def after_test_iter(self, trainer, *args):
trainer.states['step_metrics'] = dict()
for metric_name, metric_calculator in trainer.states['metrics']['test'].items():
trainer.states['step_metrics'][metric_name.lower()] = \
f'{_format_number(metric_calculator.get_last_step_value())}'
@HOOKS.register_module
class LogMetricByEpochHook(LogByEpochHook):
"""Specialized Hook to record the metric to log.
@@ -61,7 +79,7 @@ class LogMetricByEpochHook(LogByEpochHook):
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
msg.append(
f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
msg = ', '.join(msg)
msg = ' | '.join(msg)
return msg
def after_train_epoch(self, trainer):
@@ -69,15 +87,15 @@ class LogMetricByEpochHook(LogByEpochHook):
msg = self._get_str(trainer=trainer, mode='train')
if self._is_rank_to_log:
self.logger.info(
f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg}')
# f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
def after_test_epoch(self, trainer):
if self._is_epoch_to_log(trainer):
msg = self._get_str(trainer=trainer, mode='test')
if self._is_rank_to_log:
self.logger.info(
f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}')
# f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
@HOOKS.register_module
@@ -131,8 +149,7 @@ class TensorboardHook(BaseHook):
log_dir = osp.join(log_dir, f'{parallel_mode}_rank_{rank}')
os.makedirs(log_dir, exist_ok=True)
self.writer = SummaryWriter(
log_dir=log_dir, filename_suffix=f'_rank_{rank}')
self.writer = SummaryWriter(log_dir=log_dir, filename_suffix=f'_rank_{rank}')
def _log_by_iter(self, trainer, mode: str):
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
@@ -141,16 +158,14 @@ class TensorboardHook(BaseHook):
val = metric_calculator.get_last_step_value()
if self._is_valid_rank_to_log:
self.writer.add_scalar(f'{metric_name}/{mode}', val,
trainer.cur_step)
self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step)
def _log_by_epoch(self, trainer, mode: str):
for metric_name, metric_calculator in trainer.states['metrics'][mode].items():
if metric_calculator.epoch_only:
val = metric_calculator.get_accumulated_value()
if self._is_valid_rank_to_log:
self.writer.add_scalar(f'{metric_name}/{mode}', val,
trainer.cur_step)
self.writer.add_scalar(f'{metric_name}/{mode}', val, trainer.cur_step)
def after_test_iter(self, trainer, *args):
self._log_by_iter(trainer, mode='test')
@@ -178,15 +193,13 @@ class LogTimingByEpochHook(LogByEpochHook):
:param log_eval: Whether writes in evaluation
:type log_eval: bool, optional
"""
def __init__(self,
timer: MultiTimer,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
ignore_num_train_steps: int = 0
) -> None:
ignore_num_train_steps: int = 0) -> None:
super().__init__(logger=logger, interval=interval, priority=priority)
self._timer = timer
self._log_eval = log_eval
@@ -197,40 +210,39 @@ class LogTimingByEpochHook(LogByEpochHook):
self._ignore_num_train_steps = ignore_num_train_steps
self._is_train_step_history_trimmed = False
def _get_message(self):
def _get_message(self, mode):
msg = []
for timer_name, timer in self._timer:
last_elapsed_time = timer.get_elapsed_time()
if timer.has_history:
if timer_name == 'train-step' and not self._is_train_step_history_trimmed:
timer._history = timer._history[self._ignore_num_train_steps:]
self._is_train_step_history_trimmed = True
history_mean = timer.get_history_mean()
history_sum = timer.get_history_sum()
msg.append(
f'{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s')
else:
msg.append(
f'{timer_name}: last = {_format_number(last_elapsed_time)} s')
if timer_name.startswith(mode):
last_elapsed_time = timer.get_elapsed_time()
if timer.has_history:
if timer_name == 'Train-step' and not self._is_train_step_history_trimmed:
timer._history = timer._history[self._ignore_num_train_steps:]
self._is_train_step_history_trimmed = True
history_mean = timer.get_history_mean()
history_sum = timer.get_history_sum()
msg.append(
f'{timer_name}: last = {_format_number(last_elapsed_time)} s, mean = {_format_number(history_mean)} s'
)
else:
msg.append(f'{timer_name}: last = {_format_number(last_elapsed_time)} s')
msg = ', '.join(msg)
msg = ' | '.join(msg)
return msg
def after_train_epoch(self, trainer):
"""Writes log after finishing a training epoch.
"""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
msg = self._get_message()
self.logger.info(
f'Training - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}, num steps per epoch={trainer.steps_per_epoch}')
msg = self._get_message('Train')
self.logger.info(f'[Epoch {trainer.cur_epoch} / Train]: {msg}, #steps/epoch = {trainer.steps_per_epoch}')
def after_test_epoch(self, trainer):
"""Writes log after finishing a testing epoch.
"""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
msg = self._get_message()
self.logger.info(
f'Testing - Epoch {trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
msg = self._get_message('Test')
self.logger.info(f'[Epoch {trainer.cur_epoch} / Test]: {msg}')
@HOOKS.register_module
@@ -246,14 +258,12 @@ class LogMemoryByEpochHook(LogByEpochHook):
:param log_eval: Whether writes in evaluation
:type log_eval: bool, optional
"""
def __init__(self,
logger: DistributedLogger,
interval: int = 1,
priority: int = 10,
log_eval: bool = True,
report_cpu: bool = False
) -> None:
report_cpu: bool = False) -> None:
super().__init__(logger=logger, interval=interval, priority=priority)
self._log_eval = log_eval
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
@@ -262,20 +272,16 @@ class LogMemoryByEpochHook(LogByEpochHook):
"""Resets before training.
"""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
report_memory_usage('before-train', self.logger)
report_memory_usage('Before-train', self.logger)
def after_train_epoch(self, trainer):
"""Writes log after finishing a training epoch.
"""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log:
report_memory_usage(
f'After Train - Epoch {trainer.cur_epoch} - {self.__class__.__name__}',
self.logger)
report_memory_usage(f'[Epoch {trainer.cur_epoch} / Train]', self.logger)
def after_test(self, trainer):
"""Reports after testing.
"""
if self._is_epoch_to_log(trainer) and self._is_rank_to_log and self._log_eval:
report_memory_usage(
f'After Test - Epoch {trainer.cur_epoch} - {self.__class__.__name__}',
self.logger)
report_memory_usage(f'[Epoch {trainer.cur_epoch} / Test]', self.logger)

View File

@@ -1,9 +1,7 @@
from colossalai.registry import HOOKS
from torch import Tensor
from colossalai.builder import build_lr_scheduler
from colossalai.registry import HOOKS
from ._metric_hook import MetricHook
from ..metric import LearningRate
from ._metric_hook import LearningRateMetric, MetricHook
@HOOKS.register_module
@@ -19,28 +17,28 @@ class LRSchedulerHook(MetricHook):
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type priority: int, optional
"""
def __init__(self,
lr_scheduler,
by_epoch: bool,
store_lr_in_state: bool = True,
priority: int = 1,
):
def __init__(
self,
lr_scheduler,
by_epoch: bool,
store_lr_in_state: bool = True,
priority: int = 1,
):
super().__init__(priority=priority)
self.by_epoch = by_epoch
self.lr_scheduler = lr_scheduler
self.store_lr_in_state = store_lr_in_state
def after_hook_is_attached(self, trainer):
trainer.states['metrics']['train']['lr'] = LearningRate(epoch_only=self.by_epoch,
initial_lr=self.lr_scheduler.get_last_lr()[0])
trainer.states['metrics']['train']['LR'] = LearningRateMetric(epoch_only=self.by_epoch,
initial_lr=self.lr_scheduler.get_last_lr()[0])
def after_train_epoch(self, trainer):
if self.by_epoch:
self.lr_scheduler.step()
trainer.states['metrics']['train']['lr'].update(self.lr_scheduler.get_last_lr()[0])
trainer.states['metrics']['train']['LR'].update(self.lr_scheduler.get_last_lr()[0])
def after_train_iter(self, trainer, output: Tensor, label: Tensor, loss: Tensor):
if not self.by_epoch:
self.lr_scheduler.step()
trainer.states['metrics']['train']['lr'].update(self.lr_scheduler.get_last_lr()[0])
trainer.states['metrics']['train']['LR'].update(self.lr_scheduler.get_last_lr()[0])

View File

@@ -1,11 +1,209 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from abc import ABC, abstractmethod
from typing import Callable
import torch
import torch.distributed as dist
from colossalai.communication import all_reduce
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.registry import HOOKS
from colossalai.utils import is_no_pp_or_last_stage
from colossalai.utils import get_current_device, is_no_pp_or_last_stage
from ._base_hook import BaseHook
from ..metric import Loss, Accuracy1D, Accuracy2D, Accuracy, Accuracy2p5D, Accuracy3D
class Metric(ABC):
"""A basic class of metric collectors. It collects a specific
metric during training or evaluation and it's always used with
:class:`MetricHook` to help it update its states and show the
metric. So please use corresponding hook class to make the metric
collector works.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
"""
def __init__(self, epoch_only: bool):
# is the metric only read for the full epoch
self._epoch_only = epoch_only
@property
def epoch_only(self):
"""Returns :attr:`epoch_only`.
"""
return self._epoch_only
@abstractmethod
def reset(self) -> None:
"""Resets the metric to it's initial state.
By default, this is called at the start of each epoch.
"""
pass
@abstractmethod
def update(self, *args, **kwargs) -> None:
"""Updates the metric's state using the passed batch output.
By default, this is called once for each batch.
"""
pass
@abstractmethod
def get_last_step_value(self):
"""Returns the metric value in the last iteration.
"""
pass
@abstractmethod
def get_accumulated_value(self):
"""Computes the metric based on it's accumulated state.
By default, this is called at the end of each epoch.
:return: the actual quantity of interest
:rtype: Any
"""
pass
@staticmethod
@abstractmethod
def is_better(a, b) -> bool:
"""Compares a and b, and returns whether a is better than b
:return: The result of comparison
:rtype: bool
"""
pass
class LossMetric(Metric):
"""A metric collector for loss.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
"""
def __init__(self, epoch_only):
super().__init__(epoch_only=epoch_only)
self.last_step_loss = torch.zeros(1, device=get_current_device())
self.accum_loss = torch.zeros(1, device=get_current_device())
self.count = 0
def reset(self) -> None:
"""Sets :attr:`last_step_loss` and :attr:`accum_loss` to zero.
"""
self.last_step_loss.zero_()
self.accum_loss.zero_()
self.count = 0
def update(self, loss) -> None:
"""Updates :attr:`last_step_loss` and :attr:`accum_loss` with current loss.
It expects the output has loss.
:param loss: Current loss of the output
"""
# expect output to be logits, label and loss
loss_ = loss.detach()
self.last_step_loss.copy_(loss_)
self.accum_loss.add_(loss_)
self.count += 1
def get_accumulated_value(self):
"""Returns accumulated loss.
"""
if gpc.is_initialized(ParallelMode.DATA):
dist.all_reduce(self.accum_loss, op=dist.ReduceOp.SUM, group=gpc.get_group(ParallelMode.DATA))
self.accum_loss.div_(gpc.get_world_size(ParallelMode.DATA))
self.accum_loss.div_(self.count)
return self.accum_loss.item()
def get_last_step_value(self):
"""Returns :attr:`last_step_loss`.
"""
return self.last_step_loss
def is_better(a, b):
return a < b
class LearningRateMetric(Metric):
"""A metric collector for learning rate.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
"""
def __init__(self, epoch_only: bool, initial_lr: float = 0.):
super().__init__(epoch_only=epoch_only)
self.lr = initial_lr
def reset(self) -> None:
pass
def update(self, lr) -> None:
self.lr = lr
def get_last_step_value(self):
return self.lr
def get_accumulated_value(self):
return self.lr
def is_better(a, b) -> bool:
pass
class AccuracyMetric(Metric):
"""A metric collector for accuracy. It only works for classification
tasks.
:param epoch_only: Whether the metric only read for the full epoch
:type epoch_only: bool
"""
def __init__(self, epoch_only: bool, accuracy_func: Callable):
super().__init__(epoch_only=epoch_only)
self.acc = accuracy_func
self.last_step_sum = torch.zeros(1, device=get_current_device())
self.last_step_correct = torch.zeros(1, device=get_current_device())
self.accumulated_sum = torch.zeros(1, device=get_current_device())
self.accumulated_correct = torch.zeros(1, device=get_current_device())
def reset(self) -> None:
self.last_step_sum.zero_()
self.last_step_correct.zero_()
self.accumulated_sum.zero_()
self.accumulated_correct.zero_()
def update(self, logits, targets) -> None:
"""Updates last step accuracy and accumulated accuracy with current logits
and labels. It expects the output has logits and labels.
:param logits: The logits output of the model
:param label: The labels of the input data
"""
if isinstance(logits, (list, tuple)):
logits = logits[0]
if isinstance(targets, (list, tuple)):
targets = targets[0]
# update
correct = self.acc(logits, targets)
self.last_step_sum.fill_(targets.size(0))
self.last_step_correct.fill_(correct)
self.accumulated_sum += self.last_step_sum
self.accumulated_correct += self.last_step_correct
def get_last_step_value(self):
self.last_step_sum = all_reduce(self.last_step_sum, ParallelMode.DATA)
self.last_step_correct = all_reduce(self.last_step_correct, ParallelMode.DATA)
return (self.last_step_correct / self.last_step_sum).item()
def get_accumulated_value(self):
self.accumulated_sum = all_reduce(self.accumulated_sum, ParallelMode.DATA)
self.accumulated_correct = all_reduce(self.accumulated_correct, ParallelMode.DATA)
return (self.accumulated_correct / self.accumulated_sum).item()
def is_better(a, b) -> bool:
return a > b
class MetricHook(BaseHook):
@@ -19,10 +217,10 @@ class MetricHook(BaseHook):
:type trainer: Trainer
:type priority: int
"""
def __init__(self,
priority: int,
):
def __init__(
self,
priority: int,
):
super().__init__(priority)
self._is_stage_to_compute = is_no_pp_or_last_stage()
@@ -40,7 +238,6 @@ class LossHook(MetricHook):
:type trainer: Trainer
:type priority: int, optional
"""
def __init__(self, priority: int = 0):
super().__init__(priority)
@@ -48,14 +245,12 @@ class LossHook(MetricHook):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.train_loss = Loss(epoch_only=False)
self.test_loss = Loss(epoch_only=True)
self.train_loss = LossMetric(epoch_only=False)
self.test_loss = LossMetric(epoch_only=True)
# register the metric calculator
trainer.states['metrics']['train'][
self.train_loss.__class__.__name__] = self.train_loss
trainer.states['metrics']['test'][
self.test_loss.__class__.__name__] = self.test_loss
trainer.states['metrics']['train']['Loss'] = self.train_loss
trainer.states['metrics']['test']['Loss'] = self.test_loss
def before_train_epoch(self, trainer):
if self._is_stage_to_compute:
@@ -74,124 +269,6 @@ class LossHook(MetricHook):
self.test_loss.update(loss)
@HOOKS.register_module
class Accuracy1DHook(MetricHook):
"""Specialized hook class for :class:`Accuracy1D`.
It acts the same as :class:`AccuracyHook`.
:param trainer: Trainer attached with current hook
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type trainer: Trainer
:type priority: int, optional
"""
def __init__(self, priority: int = 10):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = Accuracy1D(epoch_only=True)
# register the metric
trainer.states['metrics']['test'][
self.metric.__class__.__name__] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, logits, label, *args):
if self._is_stage_to_compute:
self.metric.update(logits, label)
@HOOKS.register_module
class Accuracy2DHook(MetricHook):
"""Specialized hook class for :class:`Accuracy2D`.
It acts the same as :class:`AccuracyHook`.
:param trainer: Trainer attached with current hook
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type trainer: Trainer
:type priority: int, optional
"""
def __init__(self, priority: int = 0):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = Accuracy2D(epoch_only=True)
# register the metric
trainer.states['metrics']['test'][
self.metric.__class__.__name__] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, logits, label, *args):
if self._is_stage_to_compute:
self.metric.update(logits, label)
@HOOKS.register_module
class Accuracy2p5DHook(MetricHook):
def __init__(self, priority: int = 0):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = Accuracy2p5D(epoch_only=True)
# register the metric
trainer.states['metrics']['test'][
self.metric.__class__.__name__] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, logits, label, *args):
if self._is_stage_to_compute:
self.metric.update(logits, label)
@HOOKS.register_module
class Accuracy3DHook(MetricHook):
"""Specialized hook class for :class:`Accuracy3D`.
:param trainer: Trainer attached with current hook
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type trainer: Trainer
:type priority: int
"""
def __init__(self,
priority: int = 10):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
if self._is_stage_to_compute:
self.metric = Accuracy3D(epoch_only=True)
# register the metric
trainer.states['metrics']['test'][
self.metric.__class__.__name__] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, logits, label, *args):
if self._is_stage_to_compute:
self.metric.update(logits, label)
@HOOKS.register_module
class AccuracyHook(MetricHook):
"""Specialized hook class for :class:`Accuracy`.
@@ -201,22 +278,87 @@ class AccuracyHook(MetricHook):
:type trainer: Trainer
:type priority: int
"""
def __init__(self, priority: int = 0):
def __init__(self, accuracy_func: Callable, priority: int = 0):
super().__init__(priority)
self.accuracy_func = accuracy_func
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = Accuracy(epoch_only=True)
self.metric = AccuracyMetric(epoch_only=True, accuracy_func=self.accuracy_func)
# register the metric
trainer.states['metrics']['test'][
self.metric.__class__.__name__] = self.metric
trainer.states['metrics']['test']['Accuracy'] = self.metric
def before_test(self, trainer):
if self._is_stage_to_compute:
self.metric.reset()
def after_test_iter(self, trainer, logits, label, *args):
def after_test_iter(self, trainer, logits, targets, *args):
if self._is_stage_to_compute:
self.metric.update(logits, label)
self.metric.update(logits, targets)
class ThroughputMetric(Metric):
def __init__(self, epoch_only: bool):
super().__init__(epoch_only=epoch_only)
self.accumulated_num_samples = torch.zeros(1, device=get_current_device())
self.accumulated_used_time = torch.zeros(1, device=get_current_device())
self.last_step_num_samples = torch.zeros(1, device=get_current_device())
self.last_step_used_time = torch.zeros(1, device=get_current_device())
def reset(self) -> None:
self.accumulated_num_samples.zero_()
self.accumulated_used_time.zero_()
self.last_step_num_samples.zero_()
self.last_step_used_time.zero_()
def update(self, tensor, time) -> None:
if isinstance(tensor, (list, tuple)):
tensor = tensor[0]
self.last_step_num_samples.fill_(tensor.size(0))
self.last_step_used_time.fill_(time)
self.accumulated_num_samples += self.last_step_num_samples
self.accumulated_used_time += self.last_step_used_time
def get_last_step_value(self):
self.last_step_used_time = all_reduce(self.last_step_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.last_step_num_samples = all_reduce(self.last_step_num_samples, ParallelMode.DATA)
return (self.last_step_num_samples / (self.last_step_used_time + 1e-12)).item()
def get_accumulated_value(self):
self.accumulated_used_time = all_reduce(self.accumulated_used_time, ParallelMode.DATA) / \
gpc.get_world_size(ParallelMode.DATA)
self.accumulated_num_samples = all_reduce(self.accumulated_num_samples, ParallelMode.DATA)
return (self.accumulated_num_samples / (self.accumulated_used_time + 1e-12)).item()
def is_better(a, b) -> bool:
pass
@HOOKS.register_module
class ThroughputHook(MetricHook):
def __init__(self, priority: int = 10):
super().__init__(priority)
def after_hook_is_attached(self, trainer):
self._check_metric_states_initialization(trainer)
if self._is_stage_to_compute:
self.metric = ThroughputMetric(epoch_only=True)
# register the metric
trainer.states['metrics']['train']['Throughput'] = self.metric
trainer.states['metrics']['test']['Throughput'] = self.metric
def before_train_epoch(self, trainer):
self.metric.reset()
def after_train_iter(self, trainer, logits, targets, *args):
self.metric.update(targets, trainer._timer.get_timer('Train-step').get_elapsed_time())
def before_test(self, trainer):
self.metric.reset()
def after_test_iter(self, trainer, logits, targets, *args):
self.metric.update(targets, trainer._timer.get_timer('Test-step').get_elapsed_time())