Layer integration (#83)

* integrated parallel layers for ease of building models

* integrated 2.5d layers

* cleaned codes and unit tests

* added log metric by step hook; updated imagenet benchmark; fixed some bugs

* reworked initialization; cleaned codes

Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
This commit is contained in:
アマデウス
2021-12-27 15:04:32 +08:00
committed by GitHub
parent 5c3843dc98
commit 0fedef4f3c
118 changed files with 4941 additions and 8116 deletions

View File

@@ -4,7 +4,7 @@ from torch.nn import Parameter
import time
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn import Linear1D_Col, Linear1D_Row, TransformerMLP1D, TransformerSelfAttention1D, ViTMLP1D, ViTSelfAttention1D, ViTPatchEmbedding1D, ViTHead1D, ViTTokenFuser1D
from colossalai.nn import Linear1D_Col, Linear1D_Row
from colossalai.utils import get_current_device, print_rank_0
from .common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, NUM_CLASSES, check_equal, IMG_SIZE
@@ -17,7 +17,7 @@ def check_linear_col():
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer = Linear1D_Col(INPUT_SIZE, OUTPUT_SIZE, gather_output=True)
layer = Linear1D_Col(INPUT_SIZE, OUTPUT_SIZE)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
@@ -50,18 +50,20 @@ def check_linear_col():
B_master = B_master.clone()
B_master.requires_grad = True
C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
C = C_master.clone()
C = torch.chunk(C_master, DEPTH, dim=-1)[i]
check_equal(out, C)
print_rank_0('linear_col gather_output forward: pass')
print_rank_0('linear_col forward: pass')
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
dist.broadcast(grad_master, src=0)
grad = grad_master.detach()
grad = torch.chunk(grad_master, DEPTH, dim=-1)[i]
grad = grad.clone()
out.backward(grad)
C_master.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
check_equal(A_grad, A.grad)
@@ -73,7 +75,7 @@ def check_linear_col():
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
check_equal(B_grad, layer.bias.grad)
print_rank_0('linear_col gather_output backward: pass')
print_rank_0('linear_col backward: pass')
def check_linear_row():
@@ -84,12 +86,13 @@ def check_linear_row():
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer = Linear1D_Row(OUTPUT_SIZE, INPUT_SIZE, parallel_input=False)
layer = Linear1D_Row(OUTPUT_SIZE, INPUT_SIZE)
A_shape = (BATCH_SIZE, SEQ_LENGTH, OUTPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
dist.broadcast(A_master, src=0)
A = A_master.clone()
A = torch.chunk(A_master, DEPTH, dim=-1)[i]
A = A.clone()
A.requires_grad = True
W_shape = (INPUT_SIZE, OUTPUT_SIZE)
@@ -119,16 +122,18 @@ def check_linear_row():
C = C_master.clone()
check_equal(out, C)
print_rank_0('linear_row no parallel_input forward: pass')
print_rank_0('linear_row forward: pass')
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
dist.broadcast(grad_master, src=0)
grad = grad_master.detach()
grad = grad_master.clone()
out.backward(grad)
C_master.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[i]
check_equal(A_grad, A.grad)
W_grad = W_master.grad
@@ -138,276 +143,4 @@ def check_linear_row():
B_grad = B_master.grad
check_equal(B_grad, layer.bias.grad)
print_rank_0('linear_row no parallel_input backward: pass')
class Testvithead(torch.nn.Module):
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features, bias=bias)
def forward(self, x):
x = x[:, 0]
x = self.linear(x)
return x
def check_head():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
head = ViTHead1D(INPUT_SIZE, NUM_CLASSES, dtype=dtype)
torch.nn.init.zeros_(head.linear.bias)
torch.nn.init.ones_(head.linear.weight)
head = head.to(device)
layer = Testvithead(INPUT_SIZE, NUM_CLASSES, bias=True)
torch.nn.init.zeros_(layer.linear.bias)
torch.nn.init.ones_(layer.linear.weight)
layer = layer.to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
A.requires_grad = True
fwd_start = time.time()
out = head(A)
fwd_end = time.time()
print_rank_0(
'head forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start))
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer(A_master)
# C = torch.chunk(C_master, DEPTH, dim=0)[i]
print_rank_0('Rank {} head forward: {}'.format(i, check_equal(out, C_master)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
# grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
# bwd_start = time.time()
out.backward(grad_master)
# bwd_end = time.time()
# print_rank_0('head backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
# logger)
C_master.backward(grad_master)
A_grad = A_master.grad
# if j == 0:
print_rank_0('Rank {} head backward (input_grad): {}'.format(
i, check_equal(A_grad, A.grad)))
class Testvitembed(torch.nn.Module):
def __init__(self, img_size: int, patch_size: int, in_chans: int,
embed_size: int, drop_prob: float) -> None:
super().__init__()
self.proj = torch.nn.Conv2d(in_chans,
embed_size,
kernel_size=patch_size,
stride=patch_size)
num_patches = (img_size // patch_size)**2
self.cls_token = torch.nn.Parameter(torch.zeros(1, 1, embed_size))
self.pos_embed = torch.nn.Parameter(
torch.zeros(1, num_patches + 1, embed_size))
self.pos_drop = torch.nn.Dropout(drop_prob)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
x = self.pos_drop(x + self.pos_embed)
return x
def check_embed():
device = get_current_device()
dtype = torch.float32
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer = ViTPatchEmbedding1D(IMG_SIZE, 4, HIDDEN_SIZE)
layer2 = ViTTokenFuser1D(IMG_SIZE, 4, HIDDEN_SIZE)
torch.nn.init.zeros_(layer.proj.bias)
torch.nn.init.ones_(layer.proj.weight)
torch.nn.init.ones_(layer2.cls_token)
torch.nn.init.ones_(layer2.pos_embed)
layer = layer.to(device)
layer2 = layer2.to(device)
layer_master = Testvitembed(IMG_SIZE, 4, 3, HIDDEN_SIZE, 0.)
torch.nn.init.zeros_(layer_master.proj.bias)
torch.nn.init.ones_(layer_master.proj.weight)
torch.nn.init.ones_(layer_master.cls_token)
torch.nn.init.ones_(layer_master.pos_embed)
layer_master = layer_master.to(device)
A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer2(layer(A))
fwd_end = time.time()
print_rank_0(
'embedding forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start))
# out_cls = out[:, 0]
# out_tensor = out[:, 1:]
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
# if j == 0:
# C_cls = C_master[:, 0]
# C_cls = torch.chunk(C_cls, DEPTH, dim=0)[i]
# C_cls = torch.chunk(C_cls, DEPTH, dim=-1)[k]
# logger.info('Rank {} embed forward (cls): {}'.format(
# rank, check_equal(out_cls, C_cls)))
# C = C_master[:, 1:]
print_rank_0('Rank {} embed forward: {}'.format(i, check_equal(out, C_master)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
# cls_grad = grad_master[:, 0]
# cls_grad = torch.chunk(cls_grad, DEPTH, dim=0)[i]
# cls_grad = torch.chunk(cls_grad, DEPTH, dim=-1)[k]
# grad = grad_master[:, 1:]
# grad = torch.cat((torch.unsqueeze(cls_grad, 1), grad), dim=1)
bwd_start = time.time()
out.backward(grad_master)
bwd_end = time.time()
print_rank_0(
'embedding backward: pass | {:.3f} s'.format(bwd_end - bwd_start))
C_master.backward(grad_master)
A_grad = A_master.grad
print_rank_0('Rank {} embed backward (input_grad): {}'.format(i, check_equal(A_grad, A.grad)))
print_rank_0('Rank {} embed backward (cls_grad): {}'.format(
i, check_equal(layer_master.cls_token.grad, layer2.cls_token.grad)))
print_rank_0('Rank {} embed backward (pos_embed_grad): {}'.format(
i, check_equal(layer_master.pos_embed.grad, layer2.pos_embed.grad)))
print_rank_0('Rank {} embed backward (proj_weight_grad): {}'.format(
i, check_equal(layer_master.proj.weight.grad, layer.proj.weight.grad)))
print_rank_0('Rank {} embed backward (proj_bias_grad): {}'.format(
i, check_equal(layer_master.proj.bias.grad, layer.proj.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_attention():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer = ViTSelfAttention1D(
HIDDEN_SIZE,
NUM_ATTENTION_HEADS,
0.5,
0.5
).to(device=device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
A.requires_grad = True
mask_shape = (BATCH_SIZE, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
out = layer(A)
assert out.shape == (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
print_rank_0('self attention forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('self attention backward: pass')
def check_mlp():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer = ViTMLP1D(
HIDDEN_SIZE,
4.0
).to(device=device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
A.requires_grad = True
out = layer(A)
assert out.shape == (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
print_rank_0('mlp forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('mlp backward: pass')
def check_patch_embedding():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = 4
PATCH_SIZE = 2
i = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
layer = ViTPatchEmbedding1D(
INPUT_SIZE,
PATCH_SIZE,
HIDDEN_SIZE,
).to(device=device)
A_shape = (BATCH_SIZE, 3, INPUT_SIZE, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = A_master.clone()
A.requires_grad = True
out = layer(A)
print('output size: ', out.size())
assert out.shape == (BATCH_SIZE, 4, HIDDEN_SIZE)
print_rank_0('patch embedding forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('patch embedding backward: pass')
print_rank_0('linear_row backward: pass')

View File

@@ -3,12 +3,12 @@
import torch
DEPTH = 2
DEPTH = 4
BATCH_SIZE = 8
SEQ_LENGTH = 8
IMG_SIZE = 16
HIDDEN_SIZE = 8
NUM_CLASSES = 10
NUM_CLASSES = 8
def check_equal(A, B):
assert torch.allclose(A, B, rtol=1e-5, atol=1e-2) == True
assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True

View File

@@ -6,7 +6,7 @@ import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch, get_default_parser
from colossalai.initialize import launch
from functools import partial
from checks_1d.check_layer_1d import *
@@ -14,7 +14,7 @@ CONFIG = dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(
size=2,
size=4,
mode='1d'
)
),
@@ -31,11 +31,6 @@ def check_layer(rank, world_size):
check_linear_col()
check_linear_row()
check_attention()
check_mlp()
check_patch_embedding()
check_embed()
check_head()
gpc.destroy()
torch.cuda.empty_cache()
@@ -43,7 +38,7 @@ def check_layer(rank, world_size):
@pytest.mark.dist
def test_1d():
world_size = 2
world_size = 4
run_func = partial(check_layer, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)

View File

@@ -3,16 +3,16 @@ from torch.nn import Parameter
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn import Linear2D, LayerNorm2D, TransformerSelfAttention2D, TransformerMLP2D, TransformerLayer2D
from colossalai.nn import Linear2D, LayerNorm2D, Classifier2D
from colossalai.utils import get_current_device, print_rank_0
from .common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, check_equal
from .common import HIDDEN_SIZE, DEPTH, BATCH_SIZE, SEQ_LENGTH, check_equal, NUM_CLASSES
def check_linear():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
OUTPUT_SIZE = 2 * HIDDEN_SIZE
OUTPUT_SIZE = HIDDEN_SIZE
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
@@ -38,12 +38,13 @@ def check_linear():
B_shape = (OUTPUT_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=device)
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[j]
B = torch.chunk(B_master, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
layer.weight = Parameter(W)
layer.bias = Parameter(B)
layer.weight.data.copy_(W)
layer.bias.data.copy_(B)
out = layer(A)
A_master = A_master.clone()
@@ -56,6 +57,7 @@ def check_linear():
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
# print(f'Rank {gpc.get_global_rank()} A:\n{A}\nRank {gpc.get_global_rank()} W:\n{W}\nRank {gpc.get_global_rank()} b:\n{B}\nRank {gpc.get_global_rank()} C:\n{C}\nRank {gpc.get_global_rank()} out:\n{out}')
check_equal(out, C)
print_rank_0('linear forward: pass')
@@ -64,8 +66,10 @@ def check_linear():
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = grad.clone()
out.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
@@ -78,13 +82,92 @@ def check_linear():
check_equal(W_grad, layer.weight.grad)
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
if i == 0:
check_equal(B_grad, layer.bias.grad)
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
# if i == 0:
check_equal(B_grad, layer.bias.grad)
print_rank_0('linear backward: pass')
def check_classifier():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
OUTPUT_SIZE = NUM_CLASSES
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
layer = Classifier2D(INPUT_SIZE, OUTPUT_SIZE)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randint(5, A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[j]
A = A.clone()
A.requires_grad = True
W_shape = (OUTPUT_SIZE, INPUT_SIZE)
W_master = torch.randint(5, W_shape, dtype=dtype, device=device)
torch.distributed.broadcast(W_master, src=0)
W = torch.chunk(W_master, DEPTH, dim=-1)[j]
W = torch.chunk(W, DEPTH, dim=-1)[i]
W = W.clone()
layer.weight.data.copy_(W)
# W.requires_grad = True
B_shape = (OUTPUT_SIZE,)
B_master = torch.randint(5, B_shape, dtype=dtype, device=device)
torch.distributed.broadcast(B_master, src=0)
# B = torch.chunk(B_master, DEPTH, dim=0)[j]
B = B_master.clone()
layer.bias.data.copy_(B)
out = layer(A)
A_master = A_master.clone()
A_master.requires_grad = True
W_master = W_master.clone()
W_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
C = torch.chunk(C_master, DEPTH, dim=0)[i]
# C = torch.chunk(C, DEPTH, dim=-1)[j]
check_equal(out, C)
print_rank_0('classifier forward: pass')
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
# grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = grad.clone()
out.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[j]
check_equal(A_grad, A.grad)
W_grad = W_master.grad
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[j]
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[i]
check_equal(W_grad, layer.weight.grad)
B_grad = B_master.grad
# B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
# if i == 0:
check_equal(B_grad, layer.bias.grad)
print_rank_0('classifier backward: pass')
def check_layernorm():
device = get_current_device()
dtype = torch.float32
@@ -136,113 +219,112 @@ def check_layernorm():
print_rank_0('layer norm backward: pass')
def check_attention():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
# def check_attention():
# device = get_current_device()
# dtype = torch.float32
# INPUT_SIZE = HIDDEN_SIZE
# NUM_ATTENTION_HEADS = 2
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
# j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
# i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
layer = TransformerSelfAttention2D(
HIDDEN_SIZE,
NUM_ATTENTION_HEADS,
attention_dropout_prob=0.5,
hidden_dropout_prob=0.5,
)
# layer = TransformerSelfAttention2D(
# HIDDEN_SIZE,
# NUM_ATTENTION_HEADS,
# attention_dropout_prob=0.5,
# hidden_dropout_prob=0.5,
# )
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[j]
A = A.clone()
A.requires_grad = True
# A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
# A_master = torch.randn(A_shape, dtype=dtype, device=device)
# torch.distributed.broadcast(A_master, src=0)
# A = torch.chunk(A_master, DEPTH, dim=0)[i]
# A = torch.chunk(A, DEPTH, dim=-1)[j]
# A = A.clone()
# A.requires_grad = True
mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
# mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH)
# attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
out = layer(A, attention_mask)
assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH)
print_rank_0('self attention forward: pass')
# out = layer(A, attention_mask)
# assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH)
# print_rank_0('self attention forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
# grad_shape = out.shape
# grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('self attention backward: pass')
# out.backward(grad)
# assert A.grad.shape == A.shape
# print_rank_0('self attention backward: pass')
def check_mlp():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
# def check_mlp():
# device = get_current_device()
# dtype = torch.float32
# INPUT_SIZE = HIDDEN_SIZE
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
# j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
# i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
layer = TransformerMLP2D(
HIDDEN_SIZE,
dropout_prob=0.5,
act_func='gelu',
)
# layer = TransformerMLP2D(
# HIDDEN_SIZE,
# dropout_prob=0.5,
# act_func='gelu',
# )
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[j]
A = A.clone()
A.requires_grad = True
# A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
# A_master = torch.randn(A_shape, dtype=dtype, device=device)
# torch.distributed.broadcast(A_master, src=0)
# A = torch.chunk(A_master, DEPTH, dim=0)[i]
# A = torch.chunk(A, DEPTH, dim=-1)[j]
# A = A.clone()
# A.requires_grad = True
out = layer(A)
assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH)
print_rank_0('mlp forward: pass')
# out = layer(A)
# assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH)
# print_rank_0('mlp forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
# grad_shape = out.shape
# grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('mlp backward: pass')
# out.backward(grad)
# assert A.grad.shape == A.shape
# print_rank_0('mlp backward: pass')
def check_transformerlayer():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
# def check_transformerlayer():
# device = get_current_device()
# dtype = torch.float32
# INPUT_SIZE = HIDDEN_SIZE
# NUM_ATTENTION_HEADS = 2
j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
# j = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
# i = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
layer = TransformerLayer2D(
HIDDEN_SIZE,
NUM_ATTENTION_HEADS,
act_func='gelu',
attention_dropout_prob=0.5,
hidden_dropout_prob=0.5)
# layer = TransformerLayer2D(HIDDEN_SIZE,
# NUM_ATTENTION_HEADS,
# act_func='gelu',
# attention_dropout_prob=0.5,
# hidden_dropout_prob=0.5)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[j]
A = A.clone()
A.requires_grad = True
# A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
# A_master = torch.randn(A_shape, dtype=dtype, device=device)
# torch.distributed.broadcast(A_master, src=0)
# A = torch.chunk(A_master, DEPTH, dim=0)[i]
# A = torch.chunk(A, DEPTH, dim=-1)[j]
# A = A.clone()
# A.requires_grad = True
mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
# mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH, SEQ_LENGTH, SEQ_LENGTH)
# attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
out = layer(A, attention_mask)
assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH)
print_rank_0('transformerlayer forward: pass')
# out = layer(A, attention_mask)
# assert out.shape == (BATCH_SIZE // DEPTH, SEQ_LENGTH, INPUT_SIZE // DEPTH)
# print_rank_0('transformerlayer forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
# grad_shape = out.shape
# grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('transformerlayer backward: pass')
# out.backward(grad)
# assert A.grad.shape == A.shape
# print_rank_0('transformerlayer backward: pass')

View File

@@ -5,7 +5,7 @@ import torch
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.layer.parallel_2d import Matmul_AB_2D, Matmul_ABT_2D, Matmul_ATB_2D
from colossalai.nn.layer.parallel_2d._operation import Matmul_AB_2D, Matmul_ABT_2D, Matmul_ATB_2D
from colossalai.utils import get_current_device
from colossalai.utils import print_rank_0
from .common import check_equal, BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE, DEPTH

View File

@@ -7,7 +7,7 @@ DEPTH = 2
BATCH_SIZE = 8
SEQ_LENGTH = 8
HIDDEN_SIZE = 8
NUM_CLASSES = 8
def check_equal(A, B):
assert torch.allclose(A, B, rtol=1e-5, atol=1e-2) == True
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2) == True

View File

@@ -6,9 +6,9 @@ import torch
import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch, get_default_parser
from checks_2d.check_layer_2d import check_linear, check_layernorm, check_attention, check_mlp, check_transformerlayer
from checks_2d.check_operation_2d import check_AB, check_ABT, check_ATB
from colossalai.initialize import launch
from checks_2d.check_layer_2d import *
from checks_2d.check_operation_2d import *
from functools import partial
@@ -32,10 +32,7 @@ def check_operations():
def check_layer():
check_linear()
check_layernorm()
check_attention()
check_mlp()
check_transformerlayer()
check_classifier()
def check_layer_and_operation(rank, world_size):
launch(config=CONFIG,
@@ -45,7 +42,7 @@ def check_layer_and_operation(rank, world_size):
port=29921,
backend='nccl')
check_operations()
# check_operations()
check_layer()
gpc.destroy()
torch.cuda.empty_cache()

View File

@@ -1,9 +1,9 @@
import torch
from torch.nn import Parameter
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn import (Linear2p5D, LayerNorm2p5D, TransformerSelfAttention2p5D, TransformerMLP2p5D,
TransformerLayer2p5D)
from colossalai.nn import Linear2p5D, LayerNorm2p5D, Classifier2p5D
from colossalai.utils import get_current_device
from colossalai.utils import print_rank_0
from .common import *
@@ -71,8 +71,10 @@ def check_linear():
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i]
grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j]
grad = grad.clone()
out.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i]
@@ -92,6 +94,86 @@ def check_linear():
print_rank_0('linear backward: pass')
def check_classifier():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
OUTPUT_SIZE = NUM_CLASSES
j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
layer = Classifier2p5D(INPUT_SIZE, OUTPUT_SIZE)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randint(5, A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
A = A.clone()
A.requires_grad = True
W_shape = (OUTPUT_SIZE, INPUT_SIZE)
W_master = torch.randint(5, W_shape, dtype=dtype, device=device)
torch.distributed.broadcast(W_master, src=0)
# W = torch.chunk(W_master, TESSERACT_DIM, dim=-1)[j]
W = torch.chunk(W_master, TESSERACT_DIM, dim=-1)[j]
W = torch.chunk(W, TESSERACT_DIM, dim=-1)[i]
W = W.clone()
layer.weight.data.copy_(W)
# W.requires_grad = True
B_shape = (OUTPUT_SIZE,)
B_master = torch.randint(5, B_shape, dtype=dtype, device=device)
torch.distributed.broadcast(B_master, src=0)
# B = torch.chunk(B_master, TESSERACT_DIM, dim=0)[j]
B = B_master.clone()
layer.bias.data.copy_(B)
out = layer(A)
A_master = A_master.clone()
A_master.requires_grad = True
W_master = W_master.clone()
W_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
C = torch.chunk(C_master, TESSERACT_DIM, dim=0)[i]
# C = torch.chunk(C, TESSERACT_DIM, dim=-1)[j]
check_equal(out, C)
print_rank_0('classifier forward: pass')
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, TESSERACT_DIM, dim=0)[i]
# grad = torch.chunk(grad, TESSERACT_DIM, dim=-1)[j]
grad = grad.clone()
out.backward(grad)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=0)[i]
A_grad = torch.chunk(A_grad, TESSERACT_DIM, dim=-1)[j]
check_equal(A_grad, A.grad)
W_grad = W_master.grad
W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[j]
W_grad = torch.chunk(W_grad, TESSERACT_DIM, dim=-1)[i]
check_equal(W_grad, layer.weight.grad)
B_grad = B_master.grad
# B_grad = torch.chunk(B_grad, TESSERACT_DIM, dim=0)[j]
# if i == 0:
check_equal(B_grad, layer.bias.grad)
print_rank_0('classifier backward: pass')
def check_layernorm():
device = get_current_device()
dtype = torch.float32
@@ -146,120 +228,120 @@ def check_layernorm():
print_rank_0('layer norm backward: pass')
def check_attention():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
# def check_attention():
# device = get_current_device()
# dtype = torch.float32
# INPUT_SIZE = HIDDEN_SIZE
# NUM_ATTENTION_HEADS = 2
i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)
# i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
# j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
# k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)
layer = TransformerSelfAttention2p5D(
HIDDEN_SIZE, NUM_ATTENTION_HEADS,
attention_dropout_prob=0.5,
hidden_dropout_prob=0.5,
dtype=dtype,
)
# layer = TransformerSelfAttention2p5D(
# HIDDEN_SIZE, NUM_ATTENTION_HEADS,
# attention_dropout_prob=0.5,
# hidden_dropout_prob=0.5,
# dtype=dtype,
# )
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
A = A.clone()
A.requires_grad = True
# A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
# A_master = torch.randn(A_shape, dtype=dtype, device=device)
# torch.distributed.broadcast(A_master, src=0)
# A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
# A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
# A = A.clone()
# A.requires_grad = True
mask_shape = (BATCH_SIZE // TESSERACT_DIM, NUM_ATTENTION_HEADS // TESSERACT_DIM, SEQ_LENGTH, SEQ_LENGTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
# mask_shape = (BATCH_SIZE // TESSERACT_DIM, NUM_ATTENTION_HEADS // TESSERACT_DIM, SEQ_LENGTH, SEQ_LENGTH)
# attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
out = layer(A, attention_mask)
assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM)
print_rank_0('self attention forward: pass')
# out = layer(A, attention_mask)
# assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM)
# print_rank_0('self attention forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
# grad_shape = out.shape
# grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('self attention backward: pass')
# out.backward(grad)
# assert A.grad.shape == A.shape
# print_rank_0('self attention backward: pass')
def check_mlp():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
# def check_mlp():
# device = get_current_device()
# dtype = torch.float32
# INPUT_SIZE = HIDDEN_SIZE
i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)
# i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
# j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
# k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)
layer = TransformerMLP2p5D(
HIDDEN_SIZE,
mlp_ratio=1,
dropout_prob=0.5,
act_func='gelu',
dtype=dtype,
)
# layer = TransformerMLP2p5D(
# HIDDEN_SIZE,
# mlp_ratio=1,
# dropout_prob=0.5,
# act_func='gelu',
# dtype=dtype,
# )
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
A = A.clone()
A.requires_grad = True
# A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
# A_master = torch.randn(A_shape, dtype=dtype, device=device)
# torch.distributed.broadcast(A_master, src=0)
# A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
# A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
# A = A.clone()
# A.requires_grad = True
out = layer(A)
assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM)
print_rank_0('mlp forward: pass')
# out = layer(A)
# assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM)
# print_rank_0('mlp forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
# grad_shape = out.shape
# grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('mlp backward: pass')
# out.backward(grad)
# assert A.grad.shape == A.shape
# print_rank_0('mlp backward: pass')
def check_transformerlayer():
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
# def check_transformerlayer():
# device = get_current_device()
# dtype = torch.float32
# INPUT_SIZE = HIDDEN_SIZE
# NUM_ATTENTION_HEADS = 2
i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)
# i = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_COL)
# j = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_ROW)
# k = gpc.get_local_rank(ParallelMode.PARALLEL_2P5D_DEP)
layer = TransformerLayer2p5D(
HIDDEN_SIZE,
NUM_ATTENTION_HEADS,
act_func='gelu',
attention_dropout_prob=0.5,
hidden_dropout_prob=0.5,
dtype=dtype,
)
# layer = TransformerLayer2p5D(
# HIDDEN_SIZE,
# NUM_ATTENTION_HEADS,
# act_func='gelu',
# attention_dropout_prob=0.5,
# hidden_dropout_prob=0.5,
# dtype=dtype,
# )
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
A = A.clone()
A.requires_grad = True
# A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
# A_master = torch.randn(A_shape, dtype=dtype, device=device)
# torch.distributed.broadcast(A_master, src=0)
# A = torch.chunk(A_master, TESSERACT_DIM, dim=0)[i]
# A = torch.chunk(A, TESSERACT_DIM, dim=-1)[j]
# A = A.clone()
# A.requires_grad = True
mask_shape = (BATCH_SIZE // TESSERACT_DIM, NUM_ATTENTION_HEADS // TESSERACT_DIM, SEQ_LENGTH, SEQ_LENGTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
# mask_shape = (BATCH_SIZE // TESSERACT_DIM, NUM_ATTENTION_HEADS // TESSERACT_DIM, SEQ_LENGTH, SEQ_LENGTH)
# attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
out = layer(A, attention_mask)
assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM)
print_rank_0('transformerlayer forward: pass')
# out = layer(A, attention_mask)
# assert out.shape == (BATCH_SIZE // TESSERACT_DIM, SEQ_LENGTH, INPUT_SIZE // TESSERACT_DIM)
# print_rank_0('transformerlayer forward: pass')
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
# grad_shape = out.shape
# grad = torch.randn(grad_shape, dtype=dtype, device=device)
out.backward(grad)
assert A.grad.shape == A.shape
print_rank_0('transformerlayer backward: pass')
# out.backward(grad)
# assert A.grad.shape == A.shape
# print_rank_0('transformerlayer backward: pass')

View File

@@ -5,7 +5,8 @@ TESSERACT_DEP = 2
BATCH_SIZE = 8
SEQ_LENGTH = 8
HIDDEN_SIZE = 8
NUM_CLASSES = 3
def check_equal(A, B):
assert torch.allclose(A, B, rtol=1e-5, atol=1e-2) == True
assert torch.allclose(A, B, rtol=1e-5, atol=1e-2) == True

View File

@@ -4,7 +4,7 @@ import torch.multiprocessing as mp
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from checks_2p5d.check_layer_2p5d import check_linear, check_layernorm, check_attention, check_mlp, check_transformerlayer
from checks_2p5d.check_layer_2p5d import check_linear, check_layernorm, check_classifier
from checks_2p5d.check_operation_2p5d import check_AB, check_ABT, check_ATB
from functools import partial
@@ -12,7 +12,7 @@ from functools import partial
CONFIG = dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=8, mode='2.5d', depth=2),
tensor=dict(size=4, mode='2.5d', depth=1),
),
)
@@ -26,9 +26,7 @@ def check_operations():
def check_layer():
check_linear()
check_layernorm()
check_attention()
check_mlp()
check_transformerlayer()
check_classifier()
def check_layer_and_operation(rank, world_size):
@@ -47,7 +45,7 @@ def check_layer_and_operation(rank, world_size):
@pytest.mark.dist
def test_2p5d():
world_size = 8
world_size = 4
run_func = partial(check_layer_and_operation, world_size=world_size)
mp.spawn(run_func, nprocs=world_size)

View File

@@ -1,34 +0,0 @@
import time
import torch
import torch.distributed as dist
from colossalai.communication import all_gather, reduce_scatter, all_reduce
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.initialize import init_dist, parse_args
from colossalai.utils import get_current_device, print_rank_0
# ARGS = parse_args()
# size = ARGS.world_size
# rank = ARGS.rank
# init_method = f'tcp://{ARGS.host}:{ARGS.port}'
# dist.init_process_group(backend='nccl', rank=rank, world_size=size, init_method=init_method)
CONFIG = dict(parallel=dict(data=8, pipeline=1, tensor=dict(mode=None, size=1)))
init_dist(CONFIG)
assert dist.get_rank() == gpc.get_global_rank()
print('Rank {} / {}'.format(dist.get_rank(), dist.get_world_size()))
SIZE = 8
tensor = torch.randn(SIZE)
tensor = tensor.to(get_current_device())
print('Before: Rank {0} - {1}'.format(dist.get_rank(), tensor))
time.sleep(1)
# tensor, op = all_gather(tensor, 0, ParallelMode.GLOBAL, async_op=True)
# tensor, op = reduce_scatter(tensor, 0, ParallelMode.GLOBAL, async_op=True)
tensor, op = all_reduce(tensor, ParallelMode.GLOBAL, async_op=True)
print_rank_0('After: Rank {0} - {1}'.format(dist.get_rank(), tensor))
op.wait()
print_rank_0('Complete: Rank {0} - {1}'.format(dist.get_rank(), tensor))

View File

@@ -1,19 +1,18 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import time
import numpy as np
from colossalai.context.parallel_mode import ParallelMode
from colossalai.constants import (INPUT_GROUP_3D, OUTPUT_GROUP_3D, WEIGHT_GROUP_3D)
from colossalai.core import global_context
from colossalai.logging import get_dist_logger
from colossalai.registry import LAYERS, LOSSES
from colossalai.utils import get_current_device, print_rank_0
from colossalai.nn import (Classifier3D, CrossEntropyLoss3D, LayerNorm3D, Linear3D, PatchEmbedding3D, VanillaClassifier,
VanillaPatchEmbedding)
from colossalai.nn.layer.parallel_3d._utils import get_parallel_mode_from_env
from colossalai.constants import INPUT_GROUP_3D, WEIGHT_GROUP_3D, OUTPUT_GROUP_3D
from colossalai.utils import get_current_device, print_rank_0
from .common import *
import torch
def check_linear():
@@ -32,29 +31,20 @@ def check_linear():
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
layer = LAYERS.get_module('Linear3D')(INPUT_SIZE,
OUTPUT_SIZE,
# ParallelMode.PARALLEL_3D_INPUT,
# ParallelMode.PARALLEL_3D_WEIGHT,
dtype=dtype,
bias=True)
# torch.nn.init.zeros_(layer.bias)
# torch.nn.init.ones_(layer.weight)
layer = Linear3D(INPUT_SIZE, OUTPUT_SIZE, dtype=dtype, bias=True)
layer = layer.to(device)
layer_master = torch.nn.Linear(INPUT_SIZE, OUTPUT_SIZE)
# torch.nn.init.zeros_(layer_master.bias)
# torch.nn.init.ones_(layer_master.weight)
layer_master = layer_master.to(device)
weight_master = layer_master.weight.data.transpose(0, 1)
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=0)[k]
weight = torch.chunk(weight, DEPTH, dim=-1)[j]
layer.weight = torch.nn.Parameter(weight)
layer.weight.data.copy_(weight)
bias_master = layer_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
layer.bias = torch.nn.Parameter(bias)
layer.bias.data.copy_(bias)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
@@ -67,10 +57,10 @@ def check_linear():
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'linear forward: {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
'linear forward: {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
@@ -80,9 +70,7 @@ def check_linear():
logger.info('Rank {} linear forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
@@ -90,30 +78,25 @@ def check_linear():
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('linear backward: {:.3f} s'.format(bwd_end - bwd_start),
logger)
print_rank_0('linear backward: {:.3f} s'.format(bwd_end - bwd_start), logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} linear backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
logger.info('Rank {} linear backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad)))
B_grad = layer_master.weight.grad.transpose(0, 1)
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
# B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} linear backward (weight_grad): {}'.format(
rank, check_equal(B_grad, layer.weight.grad)))
logger.info('Rank {} linear backward (weight_grad): {}'.format(rank, check_equal(B_grad, layer.weight.grad)))
bias_grad = layer_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
logger.info('Rank {} linear backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, layer.bias.grad)))
# logger.info(f'\nRank {rank} Master:\n{layer_master.bias.grad}\nRank {rank} True:\n{bias_grad}\nRank {rank} Out:\n{layer.bias.grad}')
logger.info('Rank {} linear backward (bias_grad): {}'.format(rank, check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
@@ -133,11 +116,7 @@ def check_layernorm():
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
norm = LAYERS.get_module('LayerNorm3D')(INPUT_SIZE,
# ParallelMode.PARALLEL_3D_INPUT,
# ParallelMode.PARALLEL_3D_WEIGHT,
eps=1e-6,
dtype=dtype)
norm = LayerNorm3D(INPUT_SIZE, eps=1e-6, dtype=dtype)
norm = norm.to(device)
norm_master = torch.nn.LayerNorm(INPUT_SIZE, eps=1e-6)
norm_master = norm_master.to(device)
@@ -145,11 +124,11 @@ def check_layernorm():
weight_master = norm_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH)[k]
norm.weight = torch.nn.Parameter(weight)
norm.weight.data.copy_(weight)
bias_master = norm_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[k]
norm.bias = torch.nn.Parameter(bias)
norm.bias.data.copy_(bias)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
@@ -162,10 +141,11 @@ def check_layernorm():
fwd_start = time.time()
out = norm(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'layer norm forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
'layer norm forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape),
fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
@@ -173,14 +153,7 @@ def check_layernorm():
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} layernorm forward: {}'.format(rank,
check_equal(out, C)))
# time.sleep(rank)
# logger.info('Rank {0} master:\n{1}\nRank {0} out:\n{2}\nRank {0} true:\n{3}\n'.
# format(rank,
# C_master.detach().cpu().numpy().tolist(),
# out.detach().cpu().numpy().tolist(),
# C.detach().cpu().numpy().tolist()))
logger.info('Rank {} layernorm forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
@@ -191,39 +164,34 @@ def check_layernorm():
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0(
'layer norm backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
print_rank_0('layer norm backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} layernorm backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
logger.info('Rank {} layernorm backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad)))
bias_grad = norm_master.weight.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} layernorm backward (weight_grad): {}'.format(
rank, check_equal(bias_grad, norm.weight.grad)))
logger.info('Rank {} layernorm backward (weight_grad): {}'.format(rank, check_equal(bias_grad, norm.weight.grad)))
bias_grad = norm_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} layernorm backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, norm.bias.grad)))
logger.info('Rank {} layernorm backward (bias_grad): {}'.format(rank, check_equal(bias_grad, norm.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
def check_attention():
def check_classifier():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
NUM_ATTENTION_HEADS = 2
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
@@ -233,145 +201,19 @@ def check_attention():
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
layer = LAYERS.get_module('ViTSelfAttention3D')(HIDDEN_SIZE,
NUM_ATTENTION_HEADS,
0.,
0.1,
dtype=dtype,
bias=True)
layer = Classifier3D(INPUT_SIZE, NUM_CLASSES, dtype=dtype, bias=True)
layer = layer.to(device)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
layer_master = VanillaClassifier(INPUT_SIZE, NUM_CLASSES, bias=True, dtype=dtype)
layer_master = layer_master.to(device)
mask_shape = (BATCH_SIZE // DEPTH, NUM_ATTENTION_HEADS // DEPTH,
SEQ_LENGTH // DEPTH, SEQ_LENGTH // DEPTH)
attention_mask = torch.zeros(mask_shape, dtype=dtype, device=device)
fwd_start = time.time()
out = layer(A)
fwd_end = time.time()
print_rank_0(
'self attention forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0(
'self attention backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
return fwd_end - fwd_start, bwd_end - bwd_start
def check_mlp():
rank = torch.distributed.get_rank()
device = get_current_device()
logger = get_dist_logger()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = A_rank = global_context.get_local_rank(input_parallel_mode)
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
layer = LAYERS.get_module('ViTMLP3D')(HIDDEN_SIZE,
1,
0.1,
'gelu',
dtype=dtype,
bias=True)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
fwd_start = time.time()
out = layer(A)
fwd_end = time.time()
print_rank_0(
'mlp forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
grad_shape = out.shape
grad = torch.randn(grad_shape, dtype=dtype, device=device)
bwd_start = time.time()
out.backward(grad)
bwd_end = time.time()
print_rank_0('mlp backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
return fwd_end - fwd_start, bwd_end - bwd_start
class Testvithead(torch.nn.Module):
def __init__(self, in_features, out_features, bias=True):
super().__init__()
self.linear = torch.nn.Linear(in_features, out_features, bias=bias)
def forward(self, x):
x = x[:, 0]
x = self.linear(x)
return x
def check_head():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float32
INPUT_SIZE = HIDDEN_SIZE
input_parallel_mode = get_parallel_mode_from_env(INPUT_GROUP_3D)
weight_parallel_mode = get_parallel_mode_from_env(WEIGHT_GROUP_3D)
output_parallel_mode = get_parallel_mode_from_env(OUTPUT_GROUP_3D)
j = A_rank = global_context.get_local_rank(input_parallel_mode)
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
head = LAYERS.get_module('ViTHead3D')(INPUT_SIZE,
NUM_CLASSES,
dtype=dtype,
bias=True)
# torch.nn.init.zeros_(head.linear.bias)
# torch.nn.init.ones_(head.linear.weight)
head = head.to(device)
layer = Testvithead(INPUT_SIZE, NUM_CLASSES, bias=True)
# torch.nn.init.zeros_(layer.linear.bias)
# torch.nn.init.ones_(layer.linear.weight)
layer = layer.to(device)
weight_master = layer.linear.weight.data.transpose(0, 1)
weight_master = layer_master.weight.data
torch.distributed.broadcast(weight_master, src=0)
weight = torch.chunk(weight_master, DEPTH, dim=0)[k]
weight = torch.chunk(weight, DEPTH, dim=-1)[j]
head.linear.weight = torch.nn.Parameter(weight)
bias_master = layer.linear.bias.data
weight = torch.chunk(weight_master, DEPTH, dim=-1)[k]
layer.weight.data.copy_(weight)
bias_master = layer_master.bias.data
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
head.linear.bias = torch.nn.Parameter(bias)
layer.bias.data.copy_(bias_master)
A_shape = (BATCH_SIZE, SEQ_LENGTH, INPUT_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
@@ -383,115 +225,54 @@ def check_head():
A.requires_grad = True
fwd_start = time.time()
out = head(A)
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'head forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
'head forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape), fwd_end - fwd_start),
logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer(A_master)
C_master = layer_master(A_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} head forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0('head backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
print_rank_0('head backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
# if j == 0:
logger.info('Rank {} head backward (input_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
# else:
# logger.info('Rank {} head backward (input_grad): {}'.format(
# # rank, check_equal(A_grad, A.grad)))
# rank,
# A.grad is None))
logger.info('Rank {} head backward (input_grad): {}'.format(rank, check_equal(A_grad, A.grad)))
B_grad = layer.linear.weight.grad.transpose(0, 1)
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
# B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} head backward (weight_grad): {}'.format(
rank, check_equal(B_grad, head.linear.weight.grad)))
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
if j == k:
logger.info('Rank {} head backward (weight_grad): {}'.format(rank,
check_equal(B_grad, layer.weight.grad)))
else:
logger.info('Rank {} head backward (weight_grad): {}'.format(rank, layer.weight.grad is None))
bias_grad = layer.linear.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
logger.info('Rank {} head backward (bias_grad): {}'.format(
rank, check_equal(bias_grad, head.linear.bias.grad)))
# B_grad = layer.linear.weight.grad.transpose(0, 1)
# B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
# B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
# pad_shape = (B_grad.shape[0], math.ceil(B_grad.shape[-1] / DEPTH) * DEPTH -
# B_grad.shape[-1])
# B_grad = torch.cat(
# [B_grad, torch.zeros(pad_shape, dtype=dtype, device=device)], dim=-1)
# B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
# logger.info('Rank {} head backward (weight_grad): {}'.format(
# rank, check_equal(B_grad, head.linear.weight.grad)))
# if j == k:
# bias_grad = layer.linear.bias.grad
# bias_grad = torch.chunk(bias_grad, DEPTH)[j]
# pad_shape = (math.ceil(bias_grad.shape[0] / DEPTH) * DEPTH -
# bias_grad.shape[0], )
# bias_grad = torch.cat(
# [bias_grad,
# torch.zeros(pad_shape, dtype=dtype, device=device)])
# bias_grad = torch.chunk(bias_grad, DEPTH)[i]
# logger.info('Rank {} head backward (bias_grad): {}'.format(
# rank, check_equal(bias_grad, head.linear.bias.grad)))
# else:
# logger.info('Rank {} head backward (bias_grad): {}'.format(
# rank,
# # np.count_nonzero(
# # head.linear.bias.grad.detach().cpu().numpy()) == 0))
# head.linear.bias.grad is None))
bias_grad = layer_master.bias.grad
logger.info('Rank {} head backward (bias_grad): {}'.format(rank, check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
class Testvitembed(torch.nn.Module):
def __init__(self, img_size: int, patch_size: int, in_chans: int,
embed_size: int, drop_prob: float) -> None:
super().__init__()
self.proj = torch.nn.Conv2d(in_chans,
embed_size,
kernel_size=patch_size,
stride=patch_size)
num_patches = (img_size // patch_size)**2
self.cls_token = torch.nn.Parameter(torch.zeros(1, 1, embed_size))
self.pos_embed = torch.nn.Parameter(
torch.zeros(1, num_patches + 1, embed_size))
self.pos_drop = torch.nn.Dropout(drop_prob)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
x = self.pos_drop(x + self.pos_embed)
return x
def check_embed():
rank = torch.distributed.get_rank()
device = get_current_device()
@@ -506,21 +287,25 @@ def check_embed():
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
layer = LAYERS.get_module('ViTPatchEmbedding3D')(IMG_SIZE, 4, 3,
HIDDEN_SIZE, 0.)
torch.nn.init.zeros_(layer.proj.bias)
torch.nn.init.ones_(layer.proj.weight)
layer = PatchEmbedding3D(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype)
torch.nn.init.ones_(layer.cls_token)
torch.nn.init.ones_(layer.pos_embed)
layer = layer.to(device)
layer_master = Testvitembed(IMG_SIZE, 4, 3, HIDDEN_SIZE, 0.)
torch.nn.init.zeros_(layer_master.proj.bias)
torch.nn.init.ones_(layer_master.proj.weight)
layer_master = VanillaPatchEmbedding(IMG_SIZE, 4, 3, HIDDEN_SIZE, dtype=dtype)
torch.nn.init.ones_(layer_master.cls_token)
torch.nn.init.ones_(layer_master.pos_embed)
layer_master = layer_master.to(device)
proj_weight_master = layer_master.weight.data
torch.distributed.broadcast(proj_weight_master, src=0)
proj_weight = torch.chunk(proj_weight_master, DEPTH, dim=0)[k]
layer.weight.data.copy_(proj_weight)
proj_bias_master = layer_master.bias.data
torch.distributed.broadcast(proj_bias_master, src=0)
proj_bias = torch.chunk(proj_bias_master, DEPTH)[k]
layer.bias.data.copy_(proj_bias)
A_shape = (BATCH_SIZE, 3, IMG_SIZE, IMG_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
@@ -529,103 +314,55 @@ def check_embed():
fwd_start = time.time()
out = layer(A)
torch.cuda.synchronize()
fwd_end = time.time()
print_rank_0(
'embedding forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(A.shape), tuple(out.shape), fwd_end - fwd_start), logger)
# out_cls = out[:, 0]
# out_tensor = out[:, 1:]
'embedding forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(A.shape), tuple(out.shape),
fwd_end - fwd_start), logger)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = layer_master(A_master)
# if j == 0:
# C_cls = C_master[:, 0]
# C_cls = torch.chunk(C_cls, DEPTH, dim=0)[i]
# C_cls = torch.chunk(C_cls, DEPTH, dim=-1)[k]
# logger.info('Rank {} embed forward (cls): {}'.format(
# rank, check_equal(out_cls, C_cls)))
# C = C_master[:, 1:]
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} embed forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
# cls_grad = grad_master[:, 0]
# cls_grad = torch.chunk(cls_grad, DEPTH, dim=0)[i]
# cls_grad = torch.chunk(cls_grad, DEPTH, dim=-1)[k]
# grad = grad_master[:, 1:]
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
# grad = torch.cat((torch.unsqueeze(cls_grad, 1), grad), dim=1)
grad = grad.clone()
bwd_start = time.time()
out.backward(grad)
torch.cuda.synchronize()
bwd_end = time.time()
print_rank_0(
'embedding backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
print_rank_0('embedding backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
grad_master = grad_master.clone()
C_master.backward(grad_master)
# A_grad = A_master.grad
# logger.info('Rank {} embed backward (input_grad): {}'.format(
# rank, check_equal(A_grad, A.grad)))
# time.sleep(0.1 * rank)
# logger.info(
# 'Rank {0} master:\n{1}\nRank {0} out:\n{2}\nRank {0} true:\n{3}\n'.
# format(rank,
# A_master.grad.detach().cpu().numpy().tolist(),
# A.grad.detach().cpu().numpy().tolist(),
# A_grad.detach().cpu().numpy().tolist()), ranks=[0])
cls_grad_master = layer_master.cls_token.grad
cls_grad = torch.chunk(cls_grad_master, DEPTH, dim=-1)[k]
# if j == 0:
logger.info('Rank {} embed backward (cls_grad): {}'.format(
rank, check_equal(cls_grad, layer.cls_token.grad)))
# else:.
# logger.info('Rank {} embed backward (cls_grad): {}'.format(
# rank,
# layer.cls_token.grad is None or np.count_nonzero(
# layer.cls_token.grad.detach().cpu().numpy()) == 0))
logger.info('Rank {} embed backward (cls_grad): {}'.format(rank, check_equal(cls_grad, layer.cls_token.grad)))
pos_grad_master = layer_master.pos_embed.grad
pos_grad = torch.chunk(pos_grad_master, DEPTH, dim=-1)[k]
logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
rank, check_equal(pos_grad, layer.pos_embed.grad)))
# if i == 0:
# pos_cls_grad = pos_grad[:, 0]
# pos_tensor_grad = pos_grad[:, 1:]
# pos_tensor_grad = torch.chunk(pos_tensor_grad, DEPTH, dim=1)[j]
# if j == 0:
# logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
# rank,
# check_equal(
# torch.cat(
# (torch.unsqueeze(pos_cls_grad, 1), pos_tensor_grad),
# dim=1), layer.pos_embed.grad)))
# else:
# logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
# rank, check_equal(pos_tensor_grad, layer.pos_embed.grad[:,
# 1:])))
# else:
# logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(
# rank, layer.pos_embed.grad is None))
logger.info('Rank {} embed backward (pos_embed_grad): {}'.format(rank, check_equal(pos_grad, layer.pos_embed.grad)))
B_grad = layer_master.proj.weight.grad
B_grad = layer_master.weight.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
logger.info('Rank {} embed backward (proj_weight_grad): {}'.format(
rank, check_equal(B_grad, layer.proj.weight.grad)))
if j == k:
logger.info('Rank {} embed backward (proj_weight_grad): {}'.format(rank, check_equal(B_grad,
layer.weight.grad)))
else:
logger.info('Rank {} embed backward (proj_weight_grad): {}'.format(rank, layer.weight.grad is None))
bias_grad = layer_master.proj.bias.grad
bias_grad = layer_master.bias.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[k]
logger.info('Rank {} embed backward (proj_bias_grad): {}'.format(
rank, check_equal(bias_grad, layer.proj.bias.grad)))
logger.info('Rank {} embed backward (proj_bias_grad): {}'.format(rank, check_equal(bias_grad, layer.bias.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start
@@ -644,19 +381,15 @@ def check_loss():
i = B_rank = global_context.get_local_rank(weight_parallel_mode)
k = C_rank = global_context.get_local_rank(output_parallel_mode)
criterion = LOSSES.get_module('CrossEntropyLoss3D')()
# ParallelMode.PARALLEL_3D_INPUT, ParallelMode.PARALLEL_3D_WEIGHT)
criterion = CrossEntropyLoss3D()
criterion_master = torch.nn.CrossEntropyLoss()
out_shape = (BATCH_SIZE, NUM_CLASSES)
out_master = torch.randn(out_shape, dtype=dtype, device=device)
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ),
dtype=torch.long,
device=device)
target_master = torch.randint(NUM_CLASSES, (BATCH_SIZE, ), dtype=torch.long, device=device)
torch.distributed.broadcast(out_master, src=0)
torch.distributed.broadcast(target_master, src=0)
out = torch.chunk(out_master, DEPTH, dim=0)[i]
out = torch.chunk(out, DEPTH, dim=-1)[k]
out = torch.chunk(out, DEPTH, dim=0)[j]
out = out.clone()
out.requires_grad = True
@@ -665,27 +398,23 @@ def check_loss():
loss = criterion(out, target_master)
fwd_end = time.time()
print_rank_0(
'loss forward: pass | {0} --> {1} | {2:.3f} s'.format(
tuple(out.shape), tuple(loss.shape), fwd_end - fwd_start), logger)
'loss forward: pass | {0} --> {1} | {2:.3f} s'.format(tuple(out.shape), tuple(loss.shape), fwd_end - fwd_start),
logger)
out_master = out_master.clone()
out_master.requires_grad = True
loss_master = criterion_master(out_master, target_master)
logger.info('Rank {} CrossEntropyLoss forward: {}'.format(
rank, check_equal(loss, loss_master)))
logger.info('Rank {} CrossEntropyLoss forward: {}'.format(rank, check_equal(loss, loss_master)))
bwd_start = time.time()
loss.backward()
bwd_end = time.time()
print_rank_0('loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start),
logger)
print_rank_0('loss backward: pass | {:.3f} s'.format(bwd_end - bwd_start), logger)
loss_master.backward()
out_grad = out_master.grad
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[i]
out_grad = torch.chunk(out_grad, DEPTH, dim=-1)[k]
out_grad = torch.chunk(out_grad, DEPTH, dim=0)[j]
logger.info('Rank {} CrossEntropyLoss backward: {}'.format(
rank, check_equal(out_grad, out.grad)))
logger.info('Rank {} CrossEntropyLoss backward: {}'.format(rank, check_equal(out_grad, out.grad)))
return fwd_end - fwd_start, bwd_end - bwd_start

View File

@@ -1,465 +0,0 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from colossalai.context import ParallelMode
from colossalai.core import global_context
from colossalai.logging import get_dist_logger
from colossalai.nn.layer.parallel_3d._operation import *
from colossalai.utils import get_current_device
from .common import *
def check_AB():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
dtype = torch.float
j = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
out = Matmul_AB_3D.apply(A, B, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
A_master = A_master.clone()
A_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
C_master = torch.matmul(A_master, B_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
# check forward correctness
logger.info('Rank {} AB forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=0)[k]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
# check backward correctness
logger.info('Rank {} AB backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
# check backward correctness
logger.info('Rank {} AB backward (B_grad): {}'.format(
rank, check_equal(B_grad, B.grad)))
def check_ABT():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
C_master = torch.randn(C_shape, dtype=dtype, device=device)
torch.distributed.broadcast(C_master, src=0)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = C.clone()
C.requires_grad = True
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
B_master = torch.randn(B_shape, dtype=dtype, device=device)
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
B = B.clone()
B.requires_grad = True
out = Matmul_ABT_3D.apply(C, B, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_INPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
C_master = C_master.clone()
C_master.requires_grad = True
B_master = B_master.clone()
B_master.requires_grad = True
A_master = torch.matmul(C_master, B_master.transpose(0, 1))
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
logger.info('Rank {} ABT forward: {}'.format(rank, check_equal(out, A)))
grad_shape = A_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
# backward
out.backward(grad)
A_master.backward(grad_master)
C_grad = C_master.grad
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i]
C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j]
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[k]
logger.info('Rank {} ABT backward (A_grad): {}'.format(
rank, check_equal(C_grad, C.grad)))
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[j]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[i]
logger.info('Rank {} ABT backward (B_grad): {}'.format(
rank, check_equal(B_grad, B.grad)))
def check_ATB():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
device = get_current_device()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=device)
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
C_shape = (BATCH_SIZE, SEQ_LENGTH, 4 * HIDDEN_SIZE)
C_master = torch.randn(C_shape, dtype=dtype, device=device)
torch.distributed.broadcast(C_master, src=0)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[j]
C = torch.chunk(C, DEPTH, dim=0)[k]
C = C.clone()
C.requires_grad = True
out = Matmul_ATB_3D.apply(A, C, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_OUTPUT,
ParallelMode.PARALLEL_3D_WEIGHT)
B_shape = (HIDDEN_SIZE, 4 * HIDDEN_SIZE)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = C_master.clone()
C_master.requires_grad = True
B_master = torch.matmul(
A_master.view(-1, A_master.shape[-1]).transpose(0, 1),
C_master.view(-1, C_master.shape[-1]))
B = torch.chunk(B_master, DEPTH, dim=0)[k]
B = torch.chunk(B, DEPTH, dim=-1)[j]
B = torch.chunk(B, DEPTH, dim=-1)[i]
logger.info('Rank {} ATB forward: {}'.format(rank, check_equal(out, B)))
grad_shape = B_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[k]
grad = torch.chunk(grad, DEPTH, dim=-1)[j]
grad = torch.chunk(grad, DEPTH, dim=-1)[i]
out.backward(grad)
B_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} ATB backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
C_grad = C_master.grad
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[i]
C_grad = torch.chunk(C_grad, DEPTH, dim=-1)[j]
C_grad = torch.chunk(C_grad, DEPTH, dim=0)[k]
logger.info('Rank {} ATB backward (B_grad): {}'.format(
rank, check_equal(C_grad, C.grad)))
def check_add():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
bias_shape = (HIDDEN_SIZE, )
bias_master = torch.randn(bias_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
bias = torch.chunk(bias, DEPTH)[i]
bias = bias.clone()
bias.requires_grad = True
out = Add_3D.apply(A, bias, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
bias_master = bias_master.clone()
bias_master.requires_grad = True
C_master = A_master + bias_master
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Add forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Add backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = bias_master.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} Add backward (b_grad): {}'.format(
rank, check_equal(bias_grad, bias.grad)))
else:
logger.info('Rank {} Add backward (b_grad): {}'.format(
rank,
# np.count_nonzero(bias.grad.detach().cpu().numpy()) == 0))
bias.grad is None))
def check_mul():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
bias_shape = (HIDDEN_SIZE, )
bias_master = torch.randn(bias_shape,
dtype=dtype,
device=get_current_device())
torch.distributed.broadcast(bias_master, src=0)
bias = torch.chunk(bias_master, DEPTH)[j]
bias = torch.chunk(bias, DEPTH)[i]
bias = bias.clone()
bias.requires_grad = True
out = Mul_3D.apply(A, bias, DEPTH, ParallelMode.PARALLEL_3D_INPUT,
ParallelMode.PARALLEL_3D_WEIGHT,
ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
bias_master = bias_master.clone()
bias_master.requires_grad = True
C_master = torch.mul(A_master, bias_master)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=-1)[k]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Mul forward: {}'.format(rank, check_equal(out, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=-1)[k]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out.backward(grad)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Mul backward (A_grad): {}'.format(
rank, check_equal(A_grad, A.grad)))
if j == k:
bias_grad = bias_master.grad
bias_grad = torch.chunk(bias_grad, DEPTH)[j]
bias_grad = torch.chunk(bias_grad, DEPTH)[i]
logger.info('Rank {} Mul backward (b_grad): {}'.format(
rank, check_equal(bias_grad, bias.grad)))
else:
logger.info('Rank {} Mul backward (b_grad): {}'.format(
rank,
# np.count_nonzero(bias.grad.detach().cpu().numpy()) == 0))
bias.grad is None))
def check_sum():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
# tensor
A_shape = (BATCH_SIZE, SEQ_LENGTH, HIDDEN_SIZE)
A_master = torch.randn(A_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(A_master, src=0)
A = torch.chunk(A_master, DEPTH, dim=0)[i]
A = torch.chunk(A, DEPTH, dim=-1)[k]
A = torch.chunk(A, DEPTH, dim=0)[j]
A = A.clone()
A.requires_grad = True
out_tensor = Sum_3D.apply(A, -1, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT)
A_master = A_master.clone()
A_master.requires_grad = True
C_master = torch.sum(A_master, dim=-1)
C = torch.chunk(C_master, DEPTH, dim=0)[i]
C = torch.chunk(C, DEPTH, dim=0)[j]
logger.info('Rank {} Sum forward: {}'.format(rank,
check_equal(out_tensor, C)))
grad_shape = C_master.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
grad = torch.chunk(grad_master, DEPTH, dim=0)[i]
grad = torch.chunk(grad, DEPTH, dim=0)[j]
out_tensor.backward(grad / DEPTH)
C_master.backward(grad_master)
A_grad = A_master.grad
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[i]
A_grad = torch.chunk(A_grad, DEPTH, dim=-1)[k]
A_grad = torch.chunk(A_grad, DEPTH, dim=0)[j]
logger.info('Rank {} Sum backward: {}'.format(rank,
check_equal(A_grad, A.grad)))
def check_reduce():
rank = torch.distributed.get_rank()
logger = get_dist_logger()
dtype = torch.float
j = A_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)
i = B_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)
k = C_rank = global_context.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)
device = get_current_device()
# scaler
B_shape = (DEPTH * DEPTH, DEPTH)
B_master = torch.randn(B_shape, dtype=dtype, device=get_current_device())
torch.distributed.broadcast(B_master, src=0)
B = torch.chunk(B_master, DEPTH, dim=0)[i]
B = torch.chunk(B, DEPTH, dim=-1)[k]
B = torch.chunk(B, DEPTH, dim=0)[j]
B = torch.squeeze(B)
B = B.clone()
B.requires_grad = True
out_scaler = Reduce_3D.apply(B, 0, DEPTH, ParallelMode.PARALLEL_3D_OUTPUT)
out_scaler = Reduce_3D.apply(out_scaler, 0, DEPTH,
ParallelMode.PARALLEL_3D_INPUT)
out_scaler = Reduce_3D.apply(out_scaler, 0, DEPTH,
ParallelMode.PARALLEL_3D_WEIGHT)
B_master = B_master.clone()
B_master.requires_grad = True
D = torch.sum(B_master)
logger.info('Rank {} Reduce forward: {}'.format(rank,
check_equal(out_scaler,
D)))
grad_shape = D.shape
grad_master = torch.randn(grad_shape, dtype=dtype, device=device)
torch.distributed.broadcast(grad_master, src=0)
out_scaler.backward(grad_master)
D.backward(grad_master)
B_grad = B_master.grad
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[i]
B_grad = torch.chunk(B_grad, DEPTH, dim=-1)[k]
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[j]
B_grad = torch.squeeze(B_grad)
logger.info('Rank {} Reduce backward: {}'.format(
rank, check_equal(B_grad, B.grad)))

View File

@@ -4,12 +4,14 @@
import torch
DEPTH = 2
BATCH_SIZE = 512
SEQ_LENGTH = 128
HIDDEN_SIZE = 512
NUM_CLASSES = 1000
NUM_BLOCKS = 6
IMG_SIZE = 224
BATCH_SIZE = 8
SEQ_LENGTH = 8
HIDDEN_SIZE = 8
NUM_CLASSES = 8
NUM_BLOCKS = 2
IMG_SIZE = 16
def check_equal(A, B):
return torch.allclose(A, B, rtol=1e-4, atol=1e-2)
eq = torch.allclose(A, B, rtol=1e-3, atol=1e-2)
assert eq
return eq

View File

@@ -1,54 +1,34 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from functools import partial
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.initialize import launch, get_default_parser
from colossalai.core import global_context as gpc
from colossalai.initialize import launch
from checks_3d.check_layer_3d import *
from checks_3d.check_operation_3d import *
from colossalai.logging import get_dist_logger
from functools import partial
CONFIG = dict(parallel=dict(pipeline=1, tensor=dict(mode='3d', size=8)),
seed=0)
# def check_operations():
# check_AB()
# check_ABT()
# check_ATB()
# check_add()
# check_mul()
# check_sum()
CONFIG = dict(
parallel=dict(
pipeline=1,
tensor=dict(mode='3d', size=8),
),
seed=42,
)
def check_layer():
logger = get_dist_logger()
liear_fwd_time, linear_bwd_time = check_linear()
norm_fwd_time, norm_bwd_time = check_layernorm()
attn_fwd_time, attn_bwd_time = check_attention()
mlp_fwd_time, mlp_bwd_time = check_mlp()
head_fwd_time, head_bwd_time = check_head()
embed_fwd_time, embed_bwd_time = check_embed()
loss_fwd_time, loss_bwd_time = check_loss()
block_fwd_time = norm_fwd_time + attn_fwd_time + norm_fwd_time + mlp_fwd_time
block_bwd_time = norm_bwd_time + attn_bwd_time + norm_bwd_time + mlp_bwd_time
fwd_time = embed_fwd_time + NUM_BLOCKS * block_fwd_time + norm_fwd_time + head_fwd_time + loss_fwd_time
bwd_time = embed_bwd_time + NUM_BLOCKS * block_bwd_time + norm_bwd_time + head_bwd_time + loss_bwd_time
logger.info('ViT forward time: {:.3f} s | backward time: {:.3f} s'.format(
fwd_time, bwd_time),
ranks=[0])
check_linear()
check_layernorm()
check_classifier()
# check_embed()
# check_loss()
def check_layer_and_operation(rank, world_size):
launch(config=CONFIG,
rank=rank,
world_size=world_size,
host='localhost',
port=29923,
backend='nccl')
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=29923, backend='nccl')
check_layer()
gpc.destroy()
torch.cuda.empty_cache()