[zero]added hybrid adam, removed loss scale in adam (#527)

* [zero]added hybrid adam, removed loss scale of adam

* remove useless code
This commit is contained in:
LuGY
2022-03-25 18:03:54 +08:00
committed by GitHub
parent 8d8c5407c0
commit 105c5301c3
5 changed files with 149 additions and 27 deletions

View File

@@ -15,11 +15,8 @@ def torch_adam_update(
grad,
exp_avg,
exp_avg_sq,
loss_scale,
use_adamw,
):
if loss_scale > 0:
grad.div_(loss_scale)
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
@@ -50,10 +47,9 @@ def assertTrue(condition, msg):
@parameterize('adamw', [True, False])
@parameterize('step', [1, 2])
@parameterize('loss_scale', [-1, 2 ** 5])
@parameterize('p_dtype', [torch.float, torch.half])
@parameterize('g_dtype', [torch.float, torch.half])
def test_cpu_adam(adamw, step, loss_scale, p_dtype, g_dtype):
def test_cpu_adam(adamw, step, p_dtype, g_dtype):
lr = 1e-3
beta1, beta2 = 0.9, 0.999
eps = 1e-8
@@ -63,8 +59,6 @@ def test_cpu_adam(adamw, step, loss_scale, p_dtype, g_dtype):
p_data = torch.rand(64, dtype=p_dtype)
p_data_copy = p_data.clone().float()
p_grad = torch.rand(64, dtype=g_dtype)
if loss_scale > 0:
p_grad.mul_(loss_scale)
p_grad_copy = p_grad.clone().float()
exp_avg = torch.rand(p_data.shape)
exp_avg_copy = exp_avg.clone()
@@ -75,7 +69,7 @@ def test_cpu_adam(adamw, step, loss_scale, p_dtype, g_dtype):
import cpu_adam
cpu_adam_op = cpu_adam
except:
raise ImportError("...")
raise ImportError("Import cpu adam error, please install colossal from source code")
cpu_adam_op.create_adam(0, lr, beta1, beta2, eps, weight_decay, adamw, False)
cpu_adam_op.adam_update(
@@ -91,7 +85,7 @@ def test_cpu_adam(adamw, step, loss_scale, p_dtype, g_dtype):
p_grad.view(-1), # fp32 grad
exp_avg.view(-1),
exp_avg_sq.view(-1),
loss_scale,
-1,
)
torch_adam_update(
@@ -105,20 +99,15 @@ def test_cpu_adam(adamw, step, loss_scale, p_dtype, g_dtype):
p_grad_copy, # fp32 grad
exp_avg_copy,
exp_avg_sq_copy,
loss_scale,
adamw,
)
if loss_scale > 0:
p_grad.div_(loss_scale)
var = p_data_copy - p_data
data_diff = torch.max(torch.abs(var))
threshold = 1e-3
print(f"p_data diff {data_diff}. failed check, step {step}, lr {lr} eps "
f"{eps} beta1 {beta1} beta2 {beta2} weight_decay {weight_decay} p_dtype {p_dtype}, g_dtype {g_dtype}")
assertLess(
data_diff,
threshold,
f"p_data diff {data_diff}. failed check, step {step}, lr {lr}, loss_scale {loss_scale}, eps "
f"p_data diff {data_diff}. failed check, step {step}, lr {lr}, eps "
f"{eps} beta1 {beta1} beta2 {beta2} weight_decay {weight_decay} p_dtype {p_dtype}, g_dtype {g_dtype}",
)
max_grad_diff = torch.max(torch.abs(p_grad_copy - p_grad))

View File

@@ -18,11 +18,8 @@ def torch_adam_update(
grad,
exp_avg,
exp_avg_sq,
loss_scale,
use_adamw,
):
if loss_scale > 0:
grad.div_(loss_scale)
bias_correction1 = 1 - beta1**step
bias_correction2 = 1 - beta2**step
@@ -87,7 +84,6 @@ def test_adam(adamw, step, p_dtype, g_dtype):
g_copy, # fp32 grad
m_copy,
v_copy,
-1,
adamw,
)

View File

@@ -0,0 +1,41 @@
import torch
import torch.nn as nn
from torch.optim.adam import Adam
from torch.optim import AdamW
from colossalai.nn.optimizer.hybrid_adam import HybridAdam
from colossalai.testing import parameterize
RE = 1024
@parameterize('adamw', [False, True])
@parameterize('device', ['cpu', 'cuda:0'])
@parameterize('p_dtype', [torch.float])
@parameterize('g_dtype', [torch.float, torch.half])
def test_adam(adamw, device, p_dtype, g_dtype):
rng_state = torch.get_rng_state()
p = nn.Parameter(torch.rand(64).to(device, p_dtype))
torch.set_rng_state(rng_state)
p_copy = nn.Parameter(torch.rand(64).to(device).float())
if adamw:
optim = HybridAdam([p], lr=1e-3, adamw_mode=True)
torch_optim = AdamW([p_copy], lr=1e-3)
else:
optim = HybridAdam([p], lr=1e-3)
torch_optim = Adam([p_copy], lr=1e-3)
print(f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}")
for i in range(RE):
p.grad = torch.rand(64).to(device, p_dtype)
p_copy.grad = p.grad.clone().float()
p.grad.data = p.grad.data.to(g_dtype)
optim.step()
torch_optim.step()
if torch.isnan(p.data).any() or torch.isnan(p_copy.data).any():
continue
assert torch.allclose(p.data, p_copy.data, 1e-4, 1e-2), \
f"adaw mode {adamw}, device {device}, p_dtype {p_dtype}, g_dtype {g_dtype}"