mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-19 08:32:55 +00:00
[fx] added torchvision model tracing testing (#1216)
* [fx] added torchvision model tracing testing * remove unused imports
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
from curses import meta
|
||||
import operator
|
||||
import torch
|
||||
from .registry import meta_patched_function
|
||||
@@ -142,3 +141,40 @@ def torch_bmm(input, mat2, *, out=None):
|
||||
batch_size, n, m = input.shape
|
||||
_, _, p = mat2.shape
|
||||
return torch.empty(batch_size, n, p, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.squeeze)
|
||||
def torch_squeeze(input, dim=None):
|
||||
shape = list(input.shape)
|
||||
if dim is not None:
|
||||
if dim < 0:
|
||||
dim = input.dim() + dim
|
||||
if shape[dim] == 1:
|
||||
shape.pop(dim)
|
||||
else:
|
||||
new_shape = []
|
||||
for dim_value in shape:
|
||||
if dim_value == 1:
|
||||
continue
|
||||
new_shape.append(dim_value)
|
||||
shape = new_shape
|
||||
return torch.empty(shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.Tensor.squeeze)
|
||||
def torch_tensor_squeeze(self, dim=None):
|
||||
return torch_squeeze(self, dim)
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.unsqueeze)
|
||||
def torch_unsqueeze(input, dim):
|
||||
shape = list(input.shape)
|
||||
if dim < 0:
|
||||
dim = input.dim() + 1 + dim
|
||||
shape.insert(dim, 1)
|
||||
return torch.empty(shape, device="meta")
|
||||
|
||||
|
||||
@meta_patched_function.register(torch.Tensor.unsqueeze)
|
||||
def torch_tensor_unsqueeze(self, dim):
|
||||
return torch_unsqueeze(self, dim)
|
||||
|
@@ -88,6 +88,137 @@ def torch_nn_conv3d(self, input):
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AvgPool1d)
|
||||
def torch_nn_avgpool1d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
|
||||
|
||||
l_in = input.shape[-1]
|
||||
|
||||
def _convert_int_to_list(item):
|
||||
if isinstance(item, int):
|
||||
return [item] * 1
|
||||
else:
|
||||
return item
|
||||
|
||||
padding = _convert_int_to_list(self.padding)
|
||||
kernel_size = _convert_int_to_list(self.kernel_size)
|
||||
stride = _convert_int_to_list(self.stride)
|
||||
|
||||
l_out = math.floor((l_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
||||
|
||||
result_shape = input.shape[:-1] + (l_out,)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AvgPool2d)
|
||||
def torch_nn_avgpool2d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
|
||||
|
||||
h_in, w_in = input.shape[-2:]
|
||||
|
||||
def _convert_int_to_list(item):
|
||||
if isinstance(item, int):
|
||||
return [item] * 2
|
||||
else:
|
||||
return item
|
||||
|
||||
padding = _convert_int_to_list(self.padding)
|
||||
kernel_size = _convert_int_to_list(self.kernel_size)
|
||||
stride = _convert_int_to_list(self.stride)
|
||||
|
||||
h_out = math.floor((h_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
||||
w_out = math.floor((w_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1)
|
||||
|
||||
result_shape = input.shape[:-2] + (
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.AvgPool3d)
|
||||
def torch_nn_avgpool3d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [4, 5], f'expected the input to have 4 or 5 dimensions, but got {num_dim} dimensions'
|
||||
|
||||
d_in, h_in, w_in = input.shape[-3:]
|
||||
|
||||
def _convert_int_to_list(item):
|
||||
if isinstance(item, int):
|
||||
return [item] * 3
|
||||
else:
|
||||
return item
|
||||
|
||||
padding = _convert_int_to_list(self.padding)
|
||||
kernel_size = _convert_int_to_list(self.kernel_size)
|
||||
stride = _convert_int_to_list(self.stride)
|
||||
|
||||
d_out = math.floor((d_in + 2 * padding[0] - kernel_size[0]) / stride[0] + 1)
|
||||
h_out = math.floor((h_in + 2 * padding[1] - kernel_size[1]) / stride[1] + 1)
|
||||
w_out = math.floor((w_in + 2 * padding[2] - kernel_size[2]) / stride[2] + 1)
|
||||
|
||||
result_shape = input.shape[:-3] + (
|
||||
d_out,
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool1d)
|
||||
def torch_nn_maxpool1d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [2, 3], f'expected the input to have 2 or 3 dimensions, but got {num_dim} dimensions'
|
||||
|
||||
l_in = input.shape[-1]
|
||||
|
||||
def _convert_int_to_list(item):
|
||||
if isinstance(item, int):
|
||||
return [item] * 1
|
||||
else:
|
||||
return item
|
||||
|
||||
padding = _convert_int_to_list(self.padding)
|
||||
dilation = _convert_int_to_list(self.dilation)
|
||||
kernel_size = _convert_int_to_list(self.kernel_size)
|
||||
stride = _convert_int_to_list(self.stride)
|
||||
|
||||
l_out = math.floor((l_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
|
||||
result_shape = input.shape[:-1] + (l_out,)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool2d)
|
||||
def torch_nn_maxpool2d(self, input):
|
||||
num_dim = input.dim()
|
||||
assert num_dim in [3, 4], f'expected the input to have 3 or 4 dimensions, but got {num_dim} dimensions'
|
||||
|
||||
h_in, w_in = input.shape[-2:]
|
||||
|
||||
def _convert_int_to_list(item):
|
||||
if isinstance(item, int):
|
||||
return [item] * 2
|
||||
else:
|
||||
return item
|
||||
|
||||
padding = _convert_int_to_list(self.padding)
|
||||
dilation = _convert_int_to_list(self.dilation)
|
||||
kernel_size = _convert_int_to_list(self.kernel_size)
|
||||
stride = _convert_int_to_list(self.stride)
|
||||
|
||||
h_out = math.floor((h_in + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) / stride[0] + 1)
|
||||
w_out = math.floor((w_in + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) / stride[1] + 1)
|
||||
|
||||
result_shape = input.shape[:-2] + (
|
||||
h_out,
|
||||
w_out,
|
||||
)
|
||||
return torch.empty(result_shape, device='meta')
|
||||
|
||||
|
||||
@meta_patched_module.register(torch.nn.MaxPool3d)
|
||||
def torch_nn_maxpool3d(self, input):
|
||||
num_dim = input.dim()
|
||||
|
Reference in New Issue
Block a user