mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-06 03:20:52 +00:00
[fx] added torchvision model tracing testing (#1216)
* [fx] added torchvision model tracing testing * remove unused imports
This commit is contained in:
@@ -4,9 +4,8 @@ tracer.py:
|
||||
Implemented a tracer which supports control flow and user-defined meta arguments.
|
||||
The implementation is partly inspired HuggingFace's fx tracer
|
||||
"""
|
||||
|
||||
import enum
|
||||
import inspect
|
||||
import math
|
||||
import functools
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@@ -22,6 +21,11 @@ from .meta_patch import meta_patched_function, meta_patched_module
|
||||
__all__ = ['ColoTracer']
|
||||
|
||||
|
||||
class TracerType(enum.Enum):
|
||||
DEFAULT = 1
|
||||
META = 2
|
||||
|
||||
|
||||
class ColoTracer(Tracer):
|
||||
"""
|
||||
ColoTracer is a symbolic tracer designed to support dynamic control flow by using meta tensors for the `colossalai.fx` module.
|
||||
@@ -48,6 +52,11 @@ class ColoTracer(Tracer):
|
||||
graph = tracer.trace(model, concrete_args={'y': torch.rand(4, 10)}, meta_args={'x': torch.rand(4, 10, device='meta')})
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.tracer_type = TracerType.META
|
||||
self.proxy_cls = ColoProxy
|
||||
|
||||
# Feature flag for proxying accesses to buffer values
|
||||
proxy_buffer_attributes: bool = True
|
||||
|
||||
@@ -58,6 +67,12 @@ class ColoTracer(Tracer):
|
||||
Create a proxy for different kinds of operations.
|
||||
"""
|
||||
proxy = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
|
||||
|
||||
if self.tracer_type == TracerType.DEFAULT:
|
||||
# since meta_args is not given
|
||||
# we just fall back to the original torch.fx.Tracer
|
||||
return proxy
|
||||
|
||||
proxy: ColoProxy
|
||||
|
||||
if kind == "placeholder" and target in self.meta_args and self.meta_args[target].is_meta:
|
||||
@@ -168,11 +183,21 @@ class ColoTracer(Tracer):
|
||||
self.orig_forward = forward
|
||||
return super().call_module(m, forward, args, kwargs)
|
||||
|
||||
def proxy(self, node) -> ColoProxy:
|
||||
def proxy(self, node) -> Proxy:
|
||||
"""
|
||||
Returns a ColoProxy object.
|
||||
"""
|
||||
return ColoProxy(node, self)
|
||||
return self.proxy_cls(node, self)
|
||||
|
||||
def _configure_tracer_type(self, tracer_type: TracerType):
|
||||
if tracer_type == TracerType.DEFAULT:
|
||||
self.proxy_cls = Proxy
|
||||
self.tracer_type = TracerType.DEFAULT
|
||||
elif tracer_type == TracerType.META:
|
||||
self.proxy_cls = ColoProxy
|
||||
self.tracer_type = TracerType.META
|
||||
else:
|
||||
raise ValueError(f"Unrecognised tracer type {tracer_type}")
|
||||
|
||||
def trace(self,
|
||||
root: nn.Module,
|
||||
@@ -193,6 +218,11 @@ class ColoTracer(Tracer):
|
||||
if concrete_args is None:
|
||||
concrete_args = {}
|
||||
|
||||
if len(meta_args) == 0:
|
||||
self._configure_tracer_type(TracerType.DEFAULT)
|
||||
else:
|
||||
self._configure_tracer_type(TracerType.META)
|
||||
|
||||
# check concrete and meta args have valid names
|
||||
sig = inspect.signature(root.forward)
|
||||
sig_names = set(sig.parameters.keys())
|
||||
@@ -235,18 +265,21 @@ class ColoTracer(Tracer):
|
||||
self.concrete_args = concrete_args
|
||||
self.meta_args = meta_args
|
||||
|
||||
# wrap the torch tensor constructing methods so that they are captured in the graph
|
||||
self.patched_torch_tensor_methods = {
|
||||
target: wrap_tensor_constructor_method(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
|
||||
}
|
||||
self.patched_torch_tensor_methods = {}
|
||||
if self.tracer_type == TracerType.META:
|
||||
# wrap the torch tensor constructing methods so that they are captured in the graph
|
||||
self.patched_torch_tensor_methods = {
|
||||
target: wrap_tensor_constructor_method(getattr(torch, target))
|
||||
for target in self._TORCH_METHODS_TO_PATCH
|
||||
}
|
||||
|
||||
# patch these methods to replace their original use
|
||||
for name, (wrapper, orig) in self.patched_torch_tensor_methods.items():
|
||||
setattr(torch, name, wrapper)
|
||||
# patch these methods to replace their original use
|
||||
for name, (wrapper, orig) in self.patched_torch_tensor_methods.items():
|
||||
setattr(torch, name, wrapper)
|
||||
|
||||
# cache these methods so that we can detect whether a method call
|
||||
# should be patched during tracing
|
||||
self.orig_torch_tensor_methods = [val[1] for val in self.patched_torch_tensor_methods.values()]
|
||||
# cache these methods so that we can detect whether a method call
|
||||
# should be patched during tracing
|
||||
self.orig_torch_tensor_methods = [val[1] for val in self.patched_torch_tensor_methods.values()]
|
||||
|
||||
try:
|
||||
self.graph = super().trace(root, concrete_args=concrete_args)
|
||||
@@ -255,6 +288,9 @@ class ColoTracer(Tracer):
|
||||
for name, (_, orig) in self.patched_torch_tensor_methods.items():
|
||||
setattr(torch, name, orig)
|
||||
|
||||
if self.tracer_type == TracerType.DEFAULT:
|
||||
return self.graph
|
||||
|
||||
# This is necessary because concrete args are added as input to the traced module since
|
||||
# https://github.com/pytorch/pytorch/pull/55888.
|
||||
for node in self.graph.nodes:
|
||||
|
Reference in New Issue
Block a user