[zero] update zero context init with the updated test utils (#327)

This commit is contained in:
Jiarui Fang
2022-03-08 14:45:01 +08:00
committed by Frank Lee
parent 6268446b81
commit 11bddb6e55
10 changed files with 96 additions and 49 deletions

View File

@@ -82,25 +82,31 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
3. Shard the param and grad according to flags.
"""
def __init__(
self,
convert_fp16: bool,
convert_cuda: bool,
shard_strategy: BaseShardStrategy,
shard_param: bool = False,
shard_grad: bool = False,
):
def __init__(self,
convert_fp16: bool,
convert_cuda: bool,
shard_strategy: BaseShardStrategy,
shard_param: bool = False,
shard_grad: bool = False,
rm_torch_payload_on_the_fly=False):
super().__init__()
self.convert_fp16 = convert_fp16
self.convert_cuda = convert_cuda
self.shard_param = shard_param
self.shard_grad = shard_grad
self.shard_strategy = shard_strategy
self.rm_torch_payload_on_the_fly = rm_torch_payload_on_the_fly
self.initialized_param_list = []
def _post_context_exec(self):
"""The callback function when the context exits.
"""
pass
if not self.rm_torch_payload_on_the_fly:
for param in self.initialized_param_list:
assert hasattr(param, 'ca_attr')
param.ca_attr.remove_torch_payload()
del self.initialized_param_list
def _post_init_method(self, module):
r"""The function to call at the end of the constructor of each nn.Module.
@@ -121,7 +127,10 @@ class ZeroInitContext(InsertPostInitMethodToModuleSubClasses):
if param.grad is not None:
param.grad = param.grad.to(torch.half).to(target_device)
param.ca_attr = ShardedParamV2(param)
param.ca_attr = ShardedParamV2(param, rm_torch_payload=self.rm_torch_payload_on_the_fly)
self.initialized_param_list.append(param)
if self.shard_param:
self.shard_strategy.shard(tensor_list=[param.ca_attr._data_sharded_tensor])
if param.ca_attr.grad and self.shard_grad:

View File

@@ -7,6 +7,11 @@ from typing import List, Optional
class BaseShardStrategy(ABC):
def __init__(self, process_group: Optional[dist.ProcessGroup] = None) -> None:
"""Abstract Shard Strategy. Use to shard a tensors on multiple GPUs.
Args:
process_group (Optional[dist.ProcessGroup], optional): the process group. Defaults to None.
"""
self.process_group = process_group
self.world_size = dist.get_world_size(self.process_group)
self.local_rank = dist.get_rank(self.process_group)
@@ -14,14 +19,8 @@ class BaseShardStrategy(ABC):
@abstractmethod
def shard(self, tensor_list: List[ShardedTensor]):
r"""
sharded the memory of tensor on multiple processes.
"""
pass
@abstractmethod
def gather(self, tensor_list: List[ShardedTensor]):
r"""
duplicate tensor payload on each processes.
"""
pass

View File

@@ -10,7 +10,10 @@ from typing import Union, Tuple, Optional
class ShardedParamV2(object):
def __init__(self, param: torch.nn.Parameter, process_group: Optional[dist.ProcessGroup] = None) -> None:
def __init__(self,
param: torch.nn.Parameter,
process_group: Optional[dist.ProcessGroup] = None,
rm_torch_payload=False) -> None:
self._data_sharded_tensor = ShardedTensor(param.data, process_group)
if param.requires_grad and param.grad is not None:
self._grad_sharded_tensor = ShardedTensor(param.grad, process_group)
@@ -19,7 +22,16 @@ class ShardedParamV2(object):
self._grad_sharded_tensor = None
# make sure the shared param is the only owner of payload
param.data = torch.empty([], dtype=param.dtype, device=param.device)
# The param.data maybe used to init the other part of the model.
# For example: File "resnet.py", line 190, in __init__
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# So we can not empty the .data at this time
self.param = param
if rm_torch_payload:
self.remove_torch_payload()
def remove_torch_payload(self):
self.param.data = torch.empty([], dtype=self.param.dtype, device=self.param.device)
@property
def data(self):