mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-23 10:30:03 +00:00
[doc] improved docstring and assertion messages for the engine module (#871)
This commit is contained in:
@@ -1,9 +1,10 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
from typing import Union
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from typing import Iterable, Any
|
||||
from typing import Iterable, Any, Tuple
|
||||
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||||
from torch.nn.parallel.distributed import DistributedDataParallel
|
||||
from torch.optim import Optimizer
|
||||
@@ -33,24 +34,54 @@ class GradAccumOptimizer(ColossalaiOptimizer):
|
||||
self.model = model
|
||||
self.is_torch_ddp = isinstance(self.model, DistributedDataParallel)
|
||||
|
||||
def zero_grad(self, *args, **kwargs):
|
||||
def zero_grad(self, *args, **kwargs) -> None:
|
||||
"""
|
||||
Set all gradients to zero.
|
||||
|
||||
Args:
|
||||
*args: positional arguments for the optimizer wrapped
|
||||
**kwargs: keyword arguments for the optimizer wrapped
|
||||
"""
|
||||
|
||||
if self.accumulate_step == 0:
|
||||
self.optim.zero_grad(*args, **kwargs)
|
||||
|
||||
def step(self, *args, **kwargs):
|
||||
def step(self, *args, **kwargs) -> None:
|
||||
"""
|
||||
Update the model parameters.
|
||||
|
||||
Args:
|
||||
*args: positional arguments for the optimizer wrapped
|
||||
**kwargs: keyword arguments for the optimizer wrapped
|
||||
"""
|
||||
|
||||
if self.accumulate_step < self.accumulate_size:
|
||||
return None
|
||||
else:
|
||||
self.accumulate_step = 0
|
||||
return self.optim.step(*args, **kwargs)
|
||||
|
||||
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
||||
def clip_grad_norm(self, model: nn.Module, max_norm: float) -> None:
|
||||
"""
|
||||
Clip gradients by norm.
|
||||
|
||||
Args:
|
||||
model (:class:`torch.nn.Module`): a torch module instance
|
||||
max_norm (float): the max norm for gradient clipping
|
||||
"""
|
||||
|
||||
if self.accumulate_step < self.accumulate_size:
|
||||
pass
|
||||
else:
|
||||
self.optim.clip_grad_norm(model, max_norm)
|
||||
|
||||
def backward(self, loss: Tensor):
|
||||
def backward(self, loss: Tensor) -> None:
|
||||
"""Execute backward pass.
|
||||
|
||||
Args:
|
||||
loss (:class:`torch.Tensor`): the loss value.
|
||||
"""
|
||||
|
||||
self.accumulate_step += 1
|
||||
|
||||
if self.is_torch_ddp:
|
||||
@@ -62,7 +93,14 @@ class GradAccumOptimizer(ColossalaiOptimizer):
|
||||
scaled_loss = loss / self.accumulate_size
|
||||
self.optim.backward(scaled_loss)
|
||||
|
||||
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
||||
def backward_by_grad(self, tensor: Tensor, grad: Tensor) -> None:
|
||||
"""Execute backward pass given the gradients of the output.
|
||||
|
||||
Args:
|
||||
loss (:class:`torch.Tensor`): the loss value.
|
||||
grad (:class:`torch.Tensor`): the output gradient.
|
||||
"""
|
||||
|
||||
self.accumulate_step += 1
|
||||
no_sync = self.is_torch_ddp and self.accumulate_step < self.accumulate_size
|
||||
|
||||
@@ -84,7 +122,7 @@ class GradAccumDataloader:
|
||||
(e.g. Dali dataloader), this class will automatically consume (load data for nothing) the remaining 2 batches.
|
||||
|
||||
Args:
|
||||
optim (``Iterable``): Your dataloader object for gradient accumulation.
|
||||
dataloader (``Iterable``): Your dataloader object for gradient accumulation.
|
||||
accumulate_size (int): The number of steps to accumulate gradients.
|
||||
"""
|
||||
|
||||
@@ -96,15 +134,15 @@ class GradAccumDataloader:
|
||||
def __getattr__(self, __name: str) -> Any:
|
||||
return getattr(self.dataloader, __name)
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.steps_per_epoch
|
||||
|
||||
def __iter__(self):
|
||||
def __iter__(self) -> Iterable:
|
||||
self._cur_step = 0
|
||||
self._dataiter = iter(self.dataloader)
|
||||
return self
|
||||
|
||||
def __next__(self) -> Any:
|
||||
def __next__(self) -> Union[Tensor, Tuple[Tensor]]:
|
||||
if self._cur_step < self.steps_per_epoch:
|
||||
self._cur_step += 1
|
||||
|
||||
@@ -137,13 +175,30 @@ class GradAccumLrSchedulerByStep(_LRScheduler):
|
||||
self.accumulate_step = 0
|
||||
|
||||
@staticmethod
|
||||
def compute_effective_steps_per_epoch(dataloader: Iterable, accumulate_size: int):
|
||||
def compute_effective_steps_per_epoch(dataloader: Iterable, accumulate_size: int) -> int:
|
||||
"""
|
||||
Computes the number of effective training iterations. An effective iteration is defined
|
||||
as the the aggregation of <accumulate_size> iterations. For examples, if accumulate_size = 4,
|
||||
then 4 iterations are considered as one effective iteration.
|
||||
|
||||
Args:
|
||||
dataloader (``Iterable``): Your dataloader object for gradient accumulation.
|
||||
accumulate_size (int): The number of steps to accumulate gradients.
|
||||
|
||||
"""
|
||||
return len(dataloader) // accumulate_size
|
||||
|
||||
def __getattr__(self, __name: str) -> Any:
|
||||
return getattr(self.lr_scheduler, __name)
|
||||
|
||||
def step(self, *args, **kwargs):
|
||||
def step(self, *args, **kwargs) -> None:
|
||||
"""
|
||||
Update the learning rate.
|
||||
|
||||
Args:
|
||||
*args: positional arguments for the lr scheduler wrapped.
|
||||
**kwargs: keyword arguments for the lr scheduler wrapped.
|
||||
"""
|
||||
self.accumulate_step += 1
|
||||
if self.accumulate_step < self.accumulate_size:
|
||||
pass
|
||||
@@ -151,19 +206,52 @@ class GradAccumLrSchedulerByStep(_LRScheduler):
|
||||
self.accumulate_step = 0
|
||||
self.lr_scheduler.step(*args, **kwargs)
|
||||
|
||||
def get_lr(self):
|
||||
def get_lr(self) -> Tensor:
|
||||
"""
|
||||
Compute the next learning rate.
|
||||
|
||||
Returns:
|
||||
Tensor: the upcoming learning rate.
|
||||
"""
|
||||
|
||||
return self.lr_scheduler.get_lr()
|
||||
|
||||
def get_last_lr(self):
|
||||
def get_last_lr(self) -> Tensor:
|
||||
"""
|
||||
Returns the current learning rate.
|
||||
|
||||
Returns:
|
||||
Tensor: the current learning rate.
|
||||
"""
|
||||
|
||||
return self.lr_scheduler.get_last_lr()
|
||||
|
||||
def print_lr(self, *args, **kwargs):
|
||||
def print_lr(self, *args, **kwargs) -> None:
|
||||
"""
|
||||
Print he learning rate.
|
||||
|
||||
Args:
|
||||
*args: positional arguments for the lr scheduler wrapped.
|
||||
**kwargs: keyword arguments for the lr scheduler wrapped.
|
||||
"""
|
||||
self.lr_scheduler.print_lr(*args, **kwargs)
|
||||
|
||||
def state_dict(self) -> dict:
|
||||
"""
|
||||
Returns the states of the lr scheduler as dictionary.
|
||||
|
||||
Returns:
|
||||
dict: the states of the lr scheduler.
|
||||
"""
|
||||
return self.lr_scheduler.state_dict()
|
||||
|
||||
def load_state_dict(self, state_dict: dict) -> None:
|
||||
"""
|
||||
Load the states of the lr scheduler from a dictionary object.
|
||||
|
||||
Returns:
|
||||
dict: the states of the lr scheduler.
|
||||
"""
|
||||
self.lr_scheduler.load_state_dict(state_dict)
|
||||
|
||||
|
||||
@@ -188,7 +276,11 @@ class GradAccumGradientHandler:
|
||||
self.accumulate_size = accumulate_size
|
||||
self.accumulate_step = 0
|
||||
|
||||
def handle_gradient(self):
|
||||
def handle_gradient(self) -> None:
|
||||
"""
|
||||
Handle gradients reduction only in the last gradient accumulation step.
|
||||
"""
|
||||
|
||||
self.accumulate_step += 1
|
||||
if self.accumulate_step < self.accumulate_size:
|
||||
pass
|
||||
|
Reference in New Issue
Block a user