mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[tests] diffuser models in model zoo (#3136)
* [tests] diffuser models in model zoo * remove useless code * [tests] add diffusers to requirement-test
This commit is contained in:
1
tests/kit/model_zoo/diffusers/__init__.py
Normal file
1
tests/kit/model_zoo/diffusers/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .diffusers import *
|
73
tests/kit/model_zoo/diffusers/diffusers.py
Normal file
73
tests/kit/model_zoo/diffusers/diffusers.py
Normal file
@@ -0,0 +1,73 @@
|
||||
from functools import partial
|
||||
|
||||
import diffusers
|
||||
import torch
|
||||
import transformers
|
||||
|
||||
from ..registry import ModelAttribute, model_zoo
|
||||
|
||||
BATCH_SIZE = 2
|
||||
SEQ_LENGTH = 5
|
||||
HEIGHT = 224
|
||||
WIDTH = 224
|
||||
IN_CHANNELS = 3
|
||||
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
|
||||
TIME_STEP = 3
|
||||
|
||||
data_vae_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32))
|
||||
data_unet_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32), timestep=3)
|
||||
|
||||
identity_output = lambda x: x
|
||||
|
||||
|
||||
def data_clip_model():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
|
||||
return dict(input_ids=input_ids,
|
||||
pixel_values=pixel_values,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids)
|
||||
|
||||
|
||||
def data_clip_text():
|
||||
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
|
||||
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
||||
|
||||
|
||||
def data_clip_vision():
|
||||
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
|
||||
return dict(pixel_values=pixel_values)
|
||||
|
||||
|
||||
model_zoo.register(name='diffusers_auto_encoder_kl',
|
||||
model_fn=diffusers.AutoencoderKL,
|
||||
data_gen_fn=data_vae_fn,
|
||||
output_transform_fn=identity_output)
|
||||
|
||||
model_zoo.register(name='diffusers_vq_model',
|
||||
model_fn=diffusers.VQModel,
|
||||
data_gen_fn=data_vae_fn,
|
||||
output_transform_fn=identity_output)
|
||||
|
||||
model_zoo.register(name='diffusers_clip_model',
|
||||
model_fn=partial(transformers.CLIPModel, config=transformers.CLIPConfig()),
|
||||
data_gen_fn=data_clip_model,
|
||||
output_transform_fn=identity_output)
|
||||
|
||||
model_zoo.register(name='diffusers_clip_text_model',
|
||||
model_fn=partial(transformers.CLIPTextModel, config=transformers.CLIPTextConfig()),
|
||||
data_gen_fn=data_clip_text,
|
||||
output_transform_fn=identity_output)
|
||||
|
||||
model_zoo.register(name='diffusers_clip_vision_model',
|
||||
model_fn=partial(transformers.CLIPVisionModel, config=transformers.CLIPVisionConfig()),
|
||||
data_gen_fn=data_clip_vision,
|
||||
output_transform_fn=identity_output)
|
||||
|
||||
model_zoo.register(name='diffusers_unet2d_model',
|
||||
model_fn=diffusers.UNet2DModel,
|
||||
data_gen_fn=data_unet_fn,
|
||||
output_transform_fn=identity_output)
|
Reference in New Issue
Block a user