[tests] diffuser models in model zoo (#3136)

* [tests] diffuser models in model zoo

* remove useless code

* [tests] add diffusers to requirement-test
This commit is contained in:
HELSON 2023-03-14 17:20:28 +08:00 committed by GitHub
parent 1a46e71e07
commit 1216d1e7bd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 125 additions and 95 deletions

View File

@ -1,3 +1,4 @@
diffusers
fbgemm-gpu==0.2.0 fbgemm-gpu==0.2.0
pytest pytest
pytest-cov pytest-cov

View File

@ -1,4 +1,4 @@
from . import timm from . import diffusers, timm
from .registry import model_zoo from .registry import model_zoo
__all__ = ['model_zoo'] __all__ = ['model_zoo']

View File

@ -0,0 +1 @@
from .diffusers import *

View File

@ -0,0 +1,73 @@
from functools import partial
import diffusers
import torch
import transformers
from ..registry import ModelAttribute, model_zoo
BATCH_SIZE = 2
SEQ_LENGTH = 5
HEIGHT = 224
WIDTH = 224
IN_CHANNELS = 3
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
TIME_STEP = 3
data_vae_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32))
data_unet_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32), timestep=3)
identity_output = lambda x: x
def data_clip_model():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
return dict(input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids)
def data_clip_text():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_clip_vision():
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
return dict(pixel_values=pixel_values)
model_zoo.register(name='diffusers_auto_encoder_kl',
model_fn=diffusers.AutoencoderKL,
data_gen_fn=data_vae_fn,
output_transform_fn=identity_output)
model_zoo.register(name='diffusers_vq_model',
model_fn=diffusers.VQModel,
data_gen_fn=data_vae_fn,
output_transform_fn=identity_output)
model_zoo.register(name='diffusers_clip_model',
model_fn=partial(transformers.CLIPModel, config=transformers.CLIPConfig()),
data_gen_fn=data_clip_model,
output_transform_fn=identity_output)
model_zoo.register(name='diffusers_clip_text_model',
model_fn=partial(transformers.CLIPTextModel, config=transformers.CLIPTextConfig()),
data_gen_fn=data_clip_text,
output_transform_fn=identity_output)
model_zoo.register(name='diffusers_clip_vision_model',
model_fn=partial(transformers.CLIPVisionModel, config=transformers.CLIPVisionConfig()),
data_gen_fn=data_clip_vision,
output_transform_fn=identity_output)
model_zoo.register(name='diffusers_unet2d_model',
model_fn=diffusers.UNet2DModel,
data_gen_fn=data_unet_fn,
output_transform_fn=identity_output)

View File

@ -1,114 +1,69 @@
import pytest import pytest
import torch import torch
import transformers
from hf_tracer_utils import trace_model_and_compare_output
from colossalai.fx import symbolic_trace from colossalai.fx import symbolic_trace
from colossalai.testing.random import seed_all
try: from tests.kit.model_zoo import model_zoo
import diffusers
HAS_DIFFUSERS = True
except ImportError:
HAS_DIFFUSERS = False
BATCH_SIZE = 2
SEQ_LENGTH = 5
HEIGHT = 224
WIDTH = 224
IN_CHANNELS = 3
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 8, WIDTH // 8)
TIME_STEP = 2
@pytest.mark.skipif(not HAS_DIFFUSERS, reason="diffusers has not been installed") def assert_dict(da, db, assert_fn):
def test_vae(): assert len(da) == len(db)
MODEL_LIST = [ for k, v in da.items():
diffusers.AutoencoderKL, assert k in db
diffusers.VQModel, if not torch.is_tensor(v):
] continue
u = db.get(k)
for model_cls in MODEL_LIST: assert_fn(u, v)
model = model_cls()
sample = torch.zeros(LATENTS_SHAPE)
gm = symbolic_trace(model)
model.eval()
gm.eval()
with torch.no_grad():
fx_out = gm(sample)
non_fx_out = model(sample)
assert torch.allclose(
fx_out['sample'],
non_fx_out['sample']), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}'
def test_clip(): def trace_and_compare(model_cls, data, output_fn):
MODEL_LIST = [ model = model_cls()
transformers.CLIPModel, model.eval()
transformers.CLIPTextModel,
transformers.CLIPVisionModel,
]
CONFIG_LIST = [ concrete_args = {k: v for k, v in data.items() if not torch.is_tensor(v)}
transformers.CLIPConfig, meta_args = {k: v.to('meta') for k, v in data.items() if torch.is_tensor(v)}
transformers.CLIPTextConfig, gm = symbolic_trace(model, concrete_args=concrete_args, meta_args=meta_args)
transformers.CLIPVisionConfig,
]
def data_gen(): # run forward
if isinstance(model, transformers.CLIPModel): with torch.no_grad():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) fx_out = gm(**data)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64) non_fx_out = model(**data)
position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
kwargs = dict(input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
pixel_values=pixel_values)
elif isinstance(model, transformers.CLIPTextModel):
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
elif isinstance(model, transformers.CLIPVisionModel):
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
kwargs = dict(pixel_values=pixel_values)
return kwargs
for model_cls, config in zip(MODEL_LIST, CONFIG_LIST): # compare output
model = model_cls(config=config()) transformed_fx_out = output_fn(fx_out)
trace_model_and_compare_output(model, data_gen) transformed_non_fx_out = output_fn(non_fx_out)
def assert_fn(ta, tb):
assert torch.equal(ta, tb)
assert_dict(transformed_fx_out, transformed_non_fx_out, assert_fn)
@pytest.mark.skipif(not HAS_DIFFUSERS, reason="diffusers has not been installed") @pytest.mark.skip(reason='cannot pass this test yet')
@pytest.mark.skip(reason='cannot pass the test yet') def test_diffusers():
def test_unet(): seed_all(9091, cuda_deterministic=True)
MODEL_LIST = [
diffusers.UNet2DModel,
diffusers.UNet2DConditionModel,
]
for model_cls in MODEL_LIST: sub_model_zoo = model_zoo.get_sub_registry('diffusers')
model = model_cls()
sample = torch.zeros(LATENTS_SHAPE)
gm = symbolic_trace(model) for name, (model_fn, data_gen_fn, output_transform_fn, attribute) in sub_model_zoo.items():
data = data_gen_fn()
trace_and_compare(model_fn, data, output_transform_fn)
torch.cuda.synchronize()
print(f"{name:40s}")
model.eval()
gm.eval()
with torch.no_grad(): def test_torch_diffusers():
fx_out = gm(sample, TIME_STEP) seed_all(65535, cuda_deterministic=True)
non_fx_out = model(sample, TIME_STEP)
assert torch.allclose( sub_model_zoo = model_zoo.get_sub_registry('diffusers')
fx_out['sample'],
non_fx_out['sample']), f'{model.__class__.__name__} has inconsistent outputs, {fx_out} vs {non_fx_out}' for name, (model_fn, data_gen_fn, output_transform_fn, attribute) in sub_model_zoo.items():
data = data_gen_fn()
model = model_fn()
output = model(**data)
torch.cuda.synchronize()
print(f"{name:40s}")
if __name__ == "__main__": if __name__ == "__main__":
test_vae() test_torch_diffusers()
test_clip()
# skip because of failure
# test_unet()