mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-09 13:00:52 +00:00
[hotfix] fix CPUAdam kernel nullptr (#1410)
This commit is contained in:
@@ -24,15 +24,12 @@ SOFTWARE
|
||||
#include <math.h>
|
||||
#include <omp.h>
|
||||
#include <string.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
#include <unordered_map>
|
||||
|
||||
static std::unordered_map<int, std::shared_ptr<void>> s_optimizers;
|
||||
|
||||
// C++ interface
|
||||
|
||||
void Adam_Optimizer::Step_1(float *_params, float *grads, float *_exp_avg,
|
||||
@@ -310,35 +307,6 @@ void Adam_Optimizer::Step_4(float *_params, float *grads, float *_exp_avg,
|
||||
grad_half_precision, loss_scale);
|
||||
}
|
||||
|
||||
int create_adam_optimizer(int optimizer_id, float alpha = 1e-3,
|
||||
float betta1 = 0.9, float betta2 = 0.999,
|
||||
float eps = 1e-8, float weight_decay = 0,
|
||||
bool adamw_mode = true, bool should_log = false) {
|
||||
auto opt = std::make_shared<Adam_Optimizer>(alpha, betta1, betta2, eps,
|
||||
weight_decay, adamw_mode);
|
||||
|
||||
s_optimizers[optimizer_id] = opt;
|
||||
|
||||
if (should_log) {
|
||||
std::string avx_type = "";
|
||||
#if defined(__AVX512__)
|
||||
avx_type = "AVX512";
|
||||
#else
|
||||
#if defined(__AVX256__) or defined(__AVX2__)
|
||||
avx_type = "AVX2";
|
||||
#else
|
||||
avx_type = "scalar";
|
||||
#endif
|
||||
#endif
|
||||
printf("Adam Optimizer #%d is created with %s arithmetic capability.\n",
|
||||
optimizer_id, avx_type.c_str());
|
||||
printf("Config: alpha=%f, betas=(%f, %f), weight_decay=%f, adam_w=%d\n",
|
||||
alpha, betta1, betta2, weight_decay, (int)adamw_mode);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
||||
float *_exp_avg_sq, size_t _param_size,
|
||||
bool param_half_precision, bool grad_half_precision,
|
||||
@@ -460,11 +428,11 @@ void Adam_Optimizer::Step_8(float *_params, float *grads, float *_exp_avg,
|
||||
grad_half_precision, loss_scale);
|
||||
}
|
||||
|
||||
int adam_step(int optimizer_id, size_t step, float lr, float beta1, float beta2,
|
||||
float epsilon, float weight_decay, bool bias_correction,
|
||||
torch::Tensor ¶ms, torch::Tensor &grads,
|
||||
torch::Tensor &exp_avg, torch::Tensor &exp_avg_sq,
|
||||
float loss_scale) {
|
||||
void Adam_Optimizer::step(size_t step, float lr, float beta1, float beta2,
|
||||
float epsilon, float weight_decay,
|
||||
bool bias_correction, torch::Tensor ¶ms,
|
||||
torch::Tensor &grads, torch::Tensor &exp_avg,
|
||||
torch::Tensor &exp_avg_sq, float loss_scale) {
|
||||
auto params_c = params.contiguous();
|
||||
auto grads_c = grads.contiguous();
|
||||
auto exp_avg_c = exp_avg.contiguous();
|
||||
@@ -474,24 +442,18 @@ int adam_step(int optimizer_id, size_t step, float lr, float beta1, float beta2,
|
||||
float *grads_ptr = (float *)grads_c.data_ptr();
|
||||
float *exp_avg_ptr = (float *)exp_avg_c.data_ptr();
|
||||
float *exp_avg_sq_ptr = (float *)exp_avg_sq_c.data_ptr();
|
||||
std::shared_ptr<Adam_Optimizer> opt =
|
||||
std::static_pointer_cast<Adam_Optimizer>(s_optimizers[optimizer_id]);
|
||||
opt->IncrementStep(step, beta1, beta2);
|
||||
opt->update_state(lr, epsilon, weight_decay, bias_correction);
|
||||
opt->Step_8(params_ptr, grads_ptr, exp_avg_ptr, exp_avg_sq_ptr,
|
||||
params_c.numel(), (params.options().dtype() == at::kHalf),
|
||||
(grads.options().dtype() == at::kHalf), loss_scale);
|
||||
|
||||
return 0;
|
||||
this->IncrementStep(step, beta1, beta2);
|
||||
this->update_state(lr, epsilon, weight_decay, bias_correction);
|
||||
this->Step_8(params_ptr, grads_ptr, exp_avg_ptr, exp_avg_sq_ptr,
|
||||
params_c.numel(), (params.options().dtype() == at::kHalf),
|
||||
(grads.options().dtype() == at::kHalf), loss_scale);
|
||||
}
|
||||
|
||||
int destroy_adam_optimizer(int optimizer_id) {
|
||||
s_optimizers.erase(optimizer_id);
|
||||
return 0;
|
||||
}
|
||||
namespace py = pybind11;
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("adam_update", &adam_step, "CPU Adam update (C++)");
|
||||
m.def("create_adam", &create_adam_optimizer, "CPU Adam (C++)");
|
||||
m.def("destroy_adam", &destroy_adam_optimizer, "CPU Adam destroy (C++)");
|
||||
py::class_<Adam_Optimizer>(m, "CPUAdamOptimizer")
|
||||
.def(py::init<float, float, float, float, float, bool>())
|
||||
.def("step", &Adam_Optimizer::step);
|
||||
}
|
||||
|
@@ -26,7 +26,7 @@ SOFTWARE
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <torch/extension.h>
|
||||
#if (__x86_64__ || __i386__)
|
||||
#include <cpuid.h>
|
||||
#include <x86intrin.h>
|
||||
@@ -141,6 +141,11 @@ class Adam_Optimizer {
|
||||
}
|
||||
}
|
||||
|
||||
void step(size_t step, float lr, float beta1, float beta2, float epsilon,
|
||||
float weight_decay, bool bias_correction, torch::Tensor ¶ms,
|
||||
torch::Tensor &grads, torch::Tensor &exp_avg,
|
||||
torch::Tensor &exp_avg_sq, float loss_scale);
|
||||
|
||||
private:
|
||||
float _alpha;
|
||||
float _betta1;
|
||||
|
Reference in New Issue
Block a user