[zero] Update sharded model v2 using sharded param v2 (#323)

This commit is contained in:
ver217
2022-03-08 18:18:06 +08:00
committed by Frank Lee
parent 799d105bb4
commit 1388671699
16 changed files with 403 additions and 202 deletions

0
tests/__init__.py Normal file
View File

View File

@@ -45,16 +45,16 @@ class Net(nn.Module):
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
if loose:
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
return torch.allclose(tensor_a, tensor_b, atol=1e-2, rtol=1e-3)
return torch.allclose(tensor_a, tensor_b)
def check_grads(model, zero_model, loose=False):
for p, zero_p in zip(model.parameters(), zero_model.parameters()):
zero_grad = zero_p.grad.clone().to(p.device)
assert p.grad.dtype == zero_grad.dtype
assert allclose(p.grad, zero_grad, loose=loose)
LOGGER.info(torch.sum(p.grad - zero_grad))
grad = p.grad.float()
assert grad.dtype == zero_grad.dtype
assert allclose(grad, zero_grad, loose=loose)
def check_params(model, zero_model, loose=False):
@@ -71,11 +71,11 @@ def check_grads_padding(model, zero_model, loose=False):
chunks = torch.flatten(p.grad).chunk(dist.get_world_size())
if rank >= len(chunks):
continue
grad = chunks[rank]
grad = chunks[rank].float()
if zero_grad.size(0) > grad.size(0):
zero_grad = zero_grad[:grad.size(0)]
assert grad.dtype == zero_grad.dtype
assert allclose(grad, zero_grad, loose=loose)
assert allclose(grad, zero_grad, loose=loose), f'{grad} vs {zero_grad}'
def check_params_padding(model, zero_model, loose=False):

View File

@@ -7,12 +7,14 @@ import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.zero.shard_utils.tensor_shard_strategy import TensorShardStrategy
from colossalai.zero.init_ctx import ZeroInitContext
from common import CONFIG
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils.tensor_shard_strategy import \
TensorShardStrategy
from tests.components_to_test.registry import non_distributed_component_funcs
from common import CONFIG, Net
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
@@ -25,11 +27,11 @@ def run_dist(rank, world_size, port):
shard_param=True):
model = model_builder(checkpoint=True)
for param in model.parameters():
assert hasattr(param, 'ca_attr')
assert param.ca_attr.data.dtype == torch.half
assert param.ca_attr._data_sharded_tensor.is_sharded
assert param.ca_attr.data.device.type == 'cuda'
for param in model.parameters():
assert hasattr(param, 'col_attr')
assert param.col_attr.data.dtype == torch.half
assert param.col_attr.data.is_sharded
assert param.col_attr.data.payload.device.type == 'cuda'
@pytest.mark.dist

View File

@@ -9,19 +9,21 @@ import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import free_port
from colossalai.zero.shard_utils.tensor_shard_strategy import \
TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, Net, check_grads, check_grads_padding
from common import CONFIG, check_grads, check_grads_padding
def run_fwd_bwd(model, x, enable_autocast=False):
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(x)
loss = y.sum()
y = model(data)
loss = criterion(y, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
model.backward(loss)
@@ -31,19 +33,26 @@ def run_fwd_bwd(model, x, enable_autocast=False):
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
model = Net(checkpoint=True).cuda()
zero_model = copy.deepcopy(model)
zero_model = ShardedModelV2(zero_model, process_group=gpc.get_group(ParallelMode.DATA))
for _ in range(2):
x = torch.rand(2, 5).cuda()
run_fwd_bwd(zero_model, x, False)
run_fwd_bwd(model, x, False)
test_models = ['repeated_computed_layers', 'resnet18']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
shard_strategy = TensorShardStrategy()
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
model = model().half().cuda()
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
if dist.get_world_size() > 1:
check_grads_padding(model, zero_model)
else:
check_grads(model, zero_model)
model = DDP(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 2:
break
data, label = data.half().cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, False)
run_fwd_bwd(zero_model, data, label, criterion, False)
if dist.get_world_size() > 1:
check_grads_padding(model, zero_model, loose=True)
else:
check_grads(model, zero_model, loose=True)
@pytest.mark.dist

View File

@@ -4,18 +4,16 @@
from copy import deepcopy
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
import colossalai
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.zero.sharded_param import ShardedTensor, ShardedParam
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.utils import free_port
from colossalai.logging import get_dist_logger, disable_existing_loggers
from tests.test_zero_data_parallel.common import Net, CONFIG, allclose
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.zero.sharded_param import ShardedParam, ShardedTensor
from colossalai.zero.sharded_param.sharded_param import ShardedParamV2
from tests.test_zero_data_parallel.common import CONFIG, Net, allclose
def _run_shard_tensor(rank, world_size, port):
@@ -47,7 +45,7 @@ def _run_shard_param_v2(rank, world_size, port):
param_ref = deepcopy(param)
sparam = ShardedParamV2(param=param, process_group=None)
allclose(sparam.data, param_ref.data)
allclose(sparam.data.payload, param_ref.data)
sparam.remove_torch_payload()
assert (param.data.numel() == 1)

View File

@@ -0,0 +1,73 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import copy
from functools import partial
import colossalai
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from colossalai.utils import free_port
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils.tensor_shard_strategy import \
TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from tests.components_to_test.registry import non_distributed_component_funcs
from torch.nn.parallel import DistributedDataParallel as DDP
from common import CONFIG, check_grads, check_grads_padding
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False):
model.train()
with torch.cuda.amp.autocast(enabled=enable_autocast):
y = model(data)
loss = criterion(y, label)
loss = loss.float()
if isinstance(model, ShardedModelV2):
model.backward(loss)
else:
loss.backward()
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
shard_strategy = TensorShardStrategy()
with ZeroInitContext(convert_fp16=True, convert_cuda=True, shard_strategy=shard_strategy, shard_param=True):
zero_model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
zero_model = zero_model()
model = copy.deepcopy(zero_model)
zero_model = ShardedModelV2(zero_model, shard_strategy)
model_state_dict = zero_model.state_dict()
for n, p in model.named_parameters():
p.data = model_state_dict[n]
model = model.half().cuda()
if dist.get_world_size() > 1:
model = DDP(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 2:
break
data, label = data.half().cuda(), label.cuda()
run_fwd_bwd(model, data, label, criterion, False)
run_fwd_bwd(zero_model, data, label, criterion, False)
if dist.get_world_size() > 1:
check_grads_padding(model, zero_model, loose=True)
else:
check_grads(model, zero_model, loose=True)
@pytest.mark.dist
def test_shard_model_v2():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_shard_model_v2()

View File

@@ -56,7 +56,7 @@ def run_dist(rank, world_size, port):
check_params(model, zero_model)
@pytest.mark.dist
@pytest.mark.skip
def test_sharded_optim_v2():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())

View File

@@ -0,0 +1,43 @@
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from copy import deepcopy
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.utils import free_port
from colossalai.zero.shard_utils.tensor_shard_strategy import \
TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from tests.components_to_test.registry import non_distributed_component_funcs
from common import CONFIG
def run_dist(rank, world_size, port):
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
test_models = ['repeated_computed_layers', 'resnet18']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
model = model()
shard_strategy = TensorShardStrategy()
model = model.half().cuda()
zero_model = ShardedModelV2(deepcopy(model), shard_strategy)
zero_state_dict = zero_model.state_dict()
for key, val in model.state_dict().items():
assert torch.equal(val, zero_state_dict[key])
@pytest.mark.dist
def test_zero_state_dict():
world_size = 2
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_zero_state_dict()