mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-31 16:40:41 +00:00
Merge branch 'main' into sync/npu
This commit is contained in:
@@ -1,11 +1,4 @@
|
||||
from .gemini import (
|
||||
ColoInitContext,
|
||||
GeminiAdamOptimizer,
|
||||
GeminiDDP,
|
||||
GeminiOptimizer,
|
||||
get_static_torch_model,
|
||||
post_process_colo_init_ctx,
|
||||
)
|
||||
from .gemini import GeminiAdamOptimizer, GeminiDDP, GeminiOptimizer, get_static_torch_model
|
||||
from .low_level import LowLevelZeroOptimizer
|
||||
from .wrapper import zero_model_wrapper, zero_optim_wrapper
|
||||
|
||||
@@ -16,7 +9,5 @@ __all__ = [
|
||||
"zero_model_wrapper",
|
||||
"zero_optim_wrapper",
|
||||
"LowLevelZeroOptimizer",
|
||||
"ColoInitContext",
|
||||
"post_process_colo_init_ctx",
|
||||
"get_static_torch_model",
|
||||
]
|
||||
|
@@ -1,5 +1,4 @@
|
||||
from .chunk import ChunkManager, TensorInfo, TensorState, search_chunk_configuration
|
||||
from .colo_init_context import ColoInitContext, post_process_colo_init_ctx
|
||||
from .gemini_ddp import GeminiDDP
|
||||
from .gemini_mgr import GeminiManager
|
||||
from .gemini_optimizer import GeminiAdamOptimizer, GeminiOptimizer
|
||||
@@ -15,6 +14,4 @@ __all__ = [
|
||||
"get_static_torch_model",
|
||||
"GeminiAdamOptimizer",
|
||||
"GeminiOptimizer",
|
||||
"ColoInitContext",
|
||||
"post_process_colo_init_ctx",
|
||||
]
|
||||
|
@@ -1,197 +0,0 @@
|
||||
from typing import Any, Iterator, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from colossalai.legacy.tensor import ProcessGroup
|
||||
from colossalai.tensor import ColoParameter, ColoTensor
|
||||
from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses
|
||||
|
||||
# find named_params includes replica
|
||||
|
||||
|
||||
def _named_params_with_replica(
|
||||
module: nn.Module,
|
||||
prefix: str = "",
|
||||
recurse: bool = True,
|
||||
) -> Iterator[Tuple[str, Union[nn.Parameter, ColoTensor]]]:
|
||||
modules = module.named_modules(prefix=prefix) if recurse else [(prefix, module)]
|
||||
|
||||
for mod_prefix, mod in modules:
|
||||
for name, val in mod._parameters.items():
|
||||
if val is None:
|
||||
continue
|
||||
name = mod_prefix + ("." if mod_prefix else "") + name
|
||||
yield name, val
|
||||
|
||||
|
||||
def _convert_to_coloparam(
|
||||
param: torch.nn.Parameter,
|
||||
device: torch.device,
|
||||
dtype=torch.float,
|
||||
default_pg: Optional[ProcessGroup] = None,
|
||||
default_dist_spec: Optional[Any] = None,
|
||||
) -> ColoParameter:
|
||||
if type(param) is ColoParameter:
|
||||
return param
|
||||
# detaching tensor is necessary for optimizers.
|
||||
requires_grad = param.requires_grad
|
||||
# param is the global tensor.
|
||||
|
||||
if param.device.type == "meta":
|
||||
colo_param = ColoParameter(param, requires_grad=requires_grad)
|
||||
else:
|
||||
colo_param = ColoParameter(param.to(device=device, dtype=dtype), requires_grad=requires_grad)
|
||||
|
||||
# if default_shard_plan exists, shard the param during initialization.
|
||||
# This can reduce the model size after initialization.
|
||||
# NOTE() embedding usually can not be correctly sharded. So I use except to handle
|
||||
# the param that can not be sharded by the default plan
|
||||
if default_pg is not None:
|
||||
colo_param.set_process_group(default_pg)
|
||||
|
||||
if default_dist_spec is not None:
|
||||
try:
|
||||
colo_param.set_dist_spec(default_dist_spec)
|
||||
except:
|
||||
pass
|
||||
return colo_param
|
||||
|
||||
|
||||
def ColoModulize(module):
|
||||
"""
|
||||
Replacing the parameters() and named_parameters() with our customized ones
|
||||
"""
|
||||
|
||||
module._colo_visited = True
|
||||
|
||||
|
||||
class ColoInitContext(InsertPostInitMethodToModuleSubClasses):
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
dtype: torch.dtype = torch.float,
|
||||
default_pg: Optional[ProcessGroup] = None,
|
||||
default_dist_spec=None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
device (torch.device): the device where parameters initialized are resident. Defaults to torch.device('cpu').
|
||||
dtype (torch.dtype): the dtype of parameters initialized. Defaults to torch.float.
|
||||
default_pg (ProcessGroup): the default process group for all initialized parameters.
|
||||
default_dist_spec: the default distributed specifications.
|
||||
"""
|
||||
super().__init__()
|
||||
self._device = device
|
||||
self._dtype = dtype
|
||||
|
||||
self._register_colo_modules()
|
||||
self._default_pg = default_pg
|
||||
self._default_dist_spec = default_dist_spec
|
||||
|
||||
def _register_colo_modules(self):
|
||||
from colossalai.legacy.nn.parallel.layers import ColoEmbedding, ColoLinear, register_colo_module
|
||||
|
||||
register_colo_module(torch.nn.Linear, ColoLinear())
|
||||
register_colo_module(torch.nn.Embedding, ColoEmbedding())
|
||||
|
||||
def _pre_context_exec(self):
|
||||
pass
|
||||
|
||||
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
|
||||
"""
|
||||
The function to call at the end of the constructor of each module.
|
||||
FIXME(fjr) The module may be passed to this function multiple times?
|
||||
"""
|
||||
name_list = []
|
||||
for name, param in _named_params_with_replica(module):
|
||||
if type(param) is ColoParameter:
|
||||
continue
|
||||
|
||||
split = name.rfind(".")
|
||||
if split >= 0: # param in submodule
|
||||
module_name = name[:split]
|
||||
param_name = name[split + 1 :]
|
||||
else:
|
||||
module_name = "" # param in current module
|
||||
param_name = name
|
||||
name_list.append((module_name, param_name))
|
||||
|
||||
replaced_tensors = dict() # record mapping between (torch.Tensor, ColoTensor) to distinguish the same reference
|
||||
for module_name, param_name in name_list:
|
||||
submodule = module.get_submodule(module_name)
|
||||
param = submodule.get_parameter(param_name)
|
||||
if param in replaced_tensors:
|
||||
colo_param = replaced_tensors[param]
|
||||
else:
|
||||
colo_param = _convert_to_coloparam(
|
||||
param, self._device, self._dtype, self._default_pg, self._default_dist_spec
|
||||
)
|
||||
replaced_tensors[param] = colo_param
|
||||
delattr(submodule, param_name)
|
||||
setattr(submodule, param_name, colo_param)
|
||||
colo_param.shared_param_modules.append(submodule)
|
||||
|
||||
param_number = 0
|
||||
meta_param_number = 0
|
||||
buffer_number = 0
|
||||
meta_buffer_number = 0
|
||||
|
||||
for param in module.parameters():
|
||||
param_number += 1
|
||||
meta_param_number += param.device.type == "meta"
|
||||
|
||||
for buffer in module.buffers():
|
||||
buffer_number += 1
|
||||
meta_buffer_number += buffer.device.type == "meta"
|
||||
|
||||
if meta_param_number > 0 and meta_param_number != param_number:
|
||||
raise ValueError("Meta parameters and valued parameters can not be in the same model")
|
||||
if meta_buffer_number > 0 and meta_buffer_number != buffer_number:
|
||||
raise ValueError("Meta buffers and valued buffers can not be in the same model")
|
||||
|
||||
if meta_buffer_number == 0:
|
||||
for buffer in module.buffers():
|
||||
buffer.data = buffer.data.to(device=self._device)
|
||||
|
||||
|
||||
def post_process_colo_init_ctx(
|
||||
model: torch.nn.Module,
|
||||
device: torch.device = torch.device("cpu"),
|
||||
dtype: torch.dtype = torch.float,
|
||||
default_pg: Optional[ProcessGroup] = None,
|
||||
default_dist_spec=None,
|
||||
):
|
||||
"""post_process_colo_init_ctx
|
||||
|
||||
This function is called after `ColoInitContext`.
|
||||
|
||||
Args:
|
||||
model (torch.nn.module): the model
|
||||
device (torch.device, optional): device type of the model params. Defaults to torch.device('cpu').
|
||||
dtype (torch.dtype, optional): dtype of the model params. Defaults to torch.float.
|
||||
default_pg (Optional[ProcessGroup], optional): default process group. Defaults to None. Indicates a DP-only process group.
|
||||
default_dist_spec (Any, optional): default dist spec of params. Defaults to None.
|
||||
|
||||
Raises:
|
||||
RuntimeError: raise error if
|
||||
"""
|
||||
|
||||
torch_params = []
|
||||
for n, p in model.named_parameters():
|
||||
if not isinstance(p, ColoParameter):
|
||||
# print(f"{n} is not a ColoParameter. We are going to converting it to ColoParameter")
|
||||
torch_params.append((n, p))
|
||||
|
||||
for n, param in torch_params:
|
||||
name_list = n.split(".")
|
||||
module = model
|
||||
for i in range(len(name_list) - 1):
|
||||
module = module._modules[name_list[i]]
|
||||
delattr(module, name_list[-1])
|
||||
setattr(module, name_list[-1], _convert_to_coloparam(param, device, dtype, default_pg, default_dist_spec))
|
||||
|
||||
del torch_params
|
||||
for n, p in model.named_parameters():
|
||||
if not isinstance(p, ColoTensor):
|
||||
raise RuntimeError
|
Reference in New Issue
Block a user