[pipeline] Llama pipeline (#4205)

* bloom policy

* llama pipeline forward and tests

* fix the output and attention_mask

* fix name

* bind argument to policy

* Revert "bloom policy"

This reverts commit 8dee68a0a2.

This policy should be revert and copied to feature/bloom

* revert the bloom changes

* cancel unneeded inputs

* gpt
This commit is contained in:
Jianghai
2023-07-11 11:37:26 +08:00
committed by Hongxin Liu
parent 1094e0f0d3
commit 1622031058
6 changed files with 516 additions and 4 deletions

View File

@@ -52,7 +52,7 @@ loss_fn_for_gpt2_model = lambda x: x.last_hidden_state.mean()
loss_fn = lambda x: x.loss
config = transformers.GPT2Config(n_layer=2,
n_head=4,
n_head=2,
vocab_size=50258,
attn_pdrop=0,
embd_pdrop=0,

View File

@@ -39,6 +39,7 @@ def build_pipeline_model(model_fn,
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
pipeline_stage_manager=stage_manager)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
return org_model.cuda(), sharded_model.cuda()

View File

@@ -0,0 +1,85 @@
import pytest
import torch
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer.policies.base_policy import Policy
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, build_pipeline_model, run_forward
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# check forward
pass
@parameterize('enable_fused_normalization', [False])
@parameterize('enable_tensor_parallelism', [False])
@parameterize('use_lazy_init', [False])
#TODO: merge this into test_shard_llama
def run_llama_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
DP_DIM, PP_DIM = 0, 1
DP_SIZE, PP_SIZE = 2, 2
RANK_TO_COORDINATE = {
0: (0, 0),
1: (0, 1),
2: (1, 0),
3: (1, 1),
}
PP_RANKS_IN_GROUP = {
0: [0, 1],
1: [0, 1],
2: [2, 3],
3: [2, 3],
}
pg_mesh = ProcessGroupMesh(DP_SIZE, PP_SIZE)
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
x = torch.randint(0, 1000, (2, 3)).cuda()
hidden_states = torch.randint(0, 1000, (2, 3, 128)).to(torch.float32).cuda()
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if name == 'transformers_llama':
org_model, sharded_model = build_pipeline_model(model_fn, stage_manager, enable_fused_normalization,
enable_tensor_parallelism, use_lazy_init)
if stage_manager.stage == 0:
attention_mask = torch.ones_like(x).cuda()
output = sharded_model(input_ids=x, attention_mask=attention_mask)
assert output['hidden_states'].shape == (2, 3, 128)
else:
attention_mask = torch.ones((2, 3)).cuda()
output = sharded_model(
hidden_states=hidden_states,
attention_mask=attention_mask,
)
# print(output[0].shape)
assert output[0].shape == (2, 3, 128)
torch.cuda.empty_cache()
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_llama_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama():
spawn(check_llama, 4)
if __name__ == "__main__":
test_llama()