mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-06-21 13:11:27 +00:00
handle empty index
This commit is contained in:
parent
957e3a521a
commit
1644adf684
@ -113,7 +113,6 @@ class BaseConsumer:
|
|||||||
) as pbar:
|
) as pbar:
|
||||||
for step in pbar:
|
for step in pbar:
|
||||||
i = 0
|
i = 0
|
||||||
allow_sync_model = False
|
|
||||||
for _ in range(self.num_recv_per_update):
|
for _ in range(self.num_recv_per_update):
|
||||||
# receive data from producers
|
# receive data from producers
|
||||||
for r in range(self.num_producers):
|
for r in range(self.num_producers):
|
||||||
@ -139,7 +138,6 @@ class BaseConsumer:
|
|||||||
else:
|
else:
|
||||||
self.buffer = self.buffer[self.dp_size * self.minibatch_size :]
|
self.buffer = self.buffer[self.dp_size * self.minibatch_size :]
|
||||||
if loss is not None:
|
if loss is not None:
|
||||||
allow_sync_model = True
|
|
||||||
pbar.set_postfix({"loss": loss})
|
pbar.set_postfix({"loss": loss})
|
||||||
i += 1
|
i += 1
|
||||||
if self.lr_scheduler is not None:
|
if self.lr_scheduler is not None:
|
||||||
@ -153,31 +151,29 @@ class BaseConsumer:
|
|||||||
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
|
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
|
||||||
|
|
||||||
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
|
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
|
||||||
if allow_sync_model:
|
if self.pp_size > 1:
|
||||||
if self.pp_size > 1:
|
print(
|
||||||
print(
|
f"[T{dist.get_rank()}] Sync model PP stage {self.pp_rank} episode {episode} step {step}"
|
||||||
f"[T{dist.get_rank()}] Sync model PP stage {self.pp_rank} episode {episode} step {step}"
|
)
|
||||||
|
else:
|
||||||
|
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
state_dict = self.state_dict()
|
||||||
|
if self.pp_size > 1:
|
||||||
|
if self.tp_rank == 0 and self.dp_rank == 0:
|
||||||
|
ray_broadcast_tensor_dict(
|
||||||
|
state_dict,
|
||||||
|
src=self.num_producers,
|
||||||
|
device=self.device,
|
||||||
|
group_name=f"sync_model_{self.pp_rank}",
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
|
if self.rank == 0:
|
||||||
torch.cuda.empty_cache()
|
ray_broadcast_tensor_dict(
|
||||||
state_dict = self.state_dict()
|
state_dict, src=self.num_producers, device=self.device, group_name="sync_model"
|
||||||
if self.pp_size > 1:
|
)
|
||||||
if self.tp_rank == 0 and self.dp_rank == 0:
|
del state_dict
|
||||||
ray_broadcast_tensor_dict(
|
torch.cuda.empty_cache()
|
||||||
state_dict,
|
|
||||||
src=self.num_producers,
|
|
||||||
device=self.device,
|
|
||||||
group_name=f"sync_model_{self.pp_rank}",
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
if self.rank == 0:
|
|
||||||
ray_broadcast_tensor_dict(
|
|
||||||
state_dict, src=self.num_producers, device=self.device, group_name="sync_model"
|
|
||||||
)
|
|
||||||
del state_dict
|
|
||||||
torch.cuda.empty_cache()
|
|
||||||
allow_sync_model = False
|
|
||||||
|
|
||||||
|
|
||||||
@ray.remote
|
@ray.remote
|
||||||
|
@ -245,17 +245,22 @@ class GRPOConsumer(BaseConsumer):
|
|||||||
# TODO: customize excessive prompts calculation.
|
# TODO: customize excessive prompts calculation.
|
||||||
if excessive_prompts_per_rank != 0:
|
if excessive_prompts_per_rank != 0:
|
||||||
# Mask excessive prompts to False
|
# Mask excessive prompts to False
|
||||||
true_indices = torch.nonzero(effective_prompts_mask).squeeze()
|
true_indices = torch.nonzero(effective_prompts_mask)
|
||||||
if excessive_prompts_per_rank <= len(true_indices):
|
# Make sure the indices are not empty.
|
||||||
excessive_prompts_idx = true_indices[-excessive_prompts_per_rank:]
|
if true_indices.numel() > 0:
|
||||||
else:
|
true_indices = true_indices.squeeze()
|
||||||
excessive_prompts_idx = true_indices
|
if excessive_prompts_per_rank <= len(true_indices):
|
||||||
effective_prompts_mask[excessive_prompts_idx] = False
|
excessive_prompts_idx = true_indices[-excessive_prompts_per_rank:]
|
||||||
|
else:
|
||||||
|
excessive_prompts_idx = true_indices
|
||||||
|
effective_prompts_mask[excessive_prompts_idx] = False
|
||||||
|
|
||||||
for mask_idx in range(len(effective_prompts_mask)):
|
for mask_idx in range(len(effective_prompts_mask)):
|
||||||
if effective_prompts_mask[mask_idx] == False:
|
if effective_prompts_mask[mask_idx] == False:
|
||||||
# Update loss mask.
|
# Update loss mask.
|
||||||
loss_mask[mask_idx] = False
|
loss_mask[mask_idx] = False
|
||||||
|
else:
|
||||||
|
excessive_prompts_idx = torch.empty([0])
|
||||||
else:
|
else:
|
||||||
# If dynamic batching is disabled, we need to use all samples for training.
|
# If dynamic batching is disabled, we need to use all samples for training.
|
||||||
need_update = (step_idx + 1) % self.num_microbatches == 0
|
need_update = (step_idx + 1) % self.num_microbatches == 0
|
||||||
|
Loading…
Reference in New Issue
Block a user