[pipeline/chimera] test chimera | fix bug of initializing (#1615)

* [pipeline/tuning] improve dispatch performance both time and space cost

* [pipeline/converge] add interface for testing convergence

* [NFC] polish colossalai/utils/multi_tensor_apply/multi_tensor_apply.py code style

* Update PipelineBase.py

* [pipeline/chimera] reconstruct PipelineBase and Worker to support more feasible custom schedule | finish Chimera

* [pipeline/chimera] test chimera | fix bug of initializing
This commit is contained in:
Kirigaya Kazuto
2022-09-20 18:00:39 +08:00
committed by GitHub
parent 504ff1d101
commit 170fa81095
13 changed files with 342 additions and 144 deletions

View File

@@ -8,8 +8,13 @@ import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from torch.optim import SGD, Adam, RMSprop, Optimizer
from torch._C._distributed_rpc import _is_current_rpc_agent_set
import torch.distributed as dist
from colorama import Back, Style
from colossalai.pipeline.pipeline_process_group import ppg
from colossalai.logging import disable_existing_loggers
from colossalai import launch
rpc_is_initialized = _is_current_rpc_agent_set
@@ -25,12 +30,15 @@ class RpcTestModel(nn.Module):
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
setattr(self, self.linear_name, nn.Linear(feat_num, h))
linear = nn.Linear(feat_num, h)
elif stage_id == actual_stage_num - 1:
setattr(self, self.linear_name, nn.Linear(h, 1))
linear = nn.Linear(h, 1)
else:
setattr(self, self.linear_name, nn.Linear(h, h))
linear = nn.Linear(h, h)
setattr(self, self.linear_name, linear)
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
@@ -46,6 +54,8 @@ def parse_args():
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--dp_degree', type=int, default=1)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
@@ -74,16 +84,24 @@ def run_worker(rank, args, master_func):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
# config rpc
# if cuda is used, set_device_map is a must is configured
# for cuda is not supported in torch rpc by default
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=args.num_worker_threads)
device = args.device
world_size = args.world_size
for rank_idx in range(world_size):
options.set_device_map(f'work{rank_idx}', {rank: rank_idx})
dp_degree = args.dp_degree
tp_degree = args.tp_degree
num_worker_threads = args.num_worker_threads
host = args.master_addr
port = args.master_port
backend = 'nccl' if device == 'cuda' else 'gloo'
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
disable_existing_loggers()
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
ppg.set_global_info(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:

View File

@@ -1,9 +1,21 @@
import torch
from torch import nn
import torch.autograd as autograd
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine, ChimeraPipelineEngine
from colossalai.pipeline.rpc import ChimeraPipelineEngine
from colossalai.testing import assert_close
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
# global variable for model created
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
@@ -17,23 +29,51 @@ def run_master(args):
use_checkpoint = False
sample_num = 1024
feat_num = 10
h = 10
batch_size = 1024
assert sample_num % batch_size == 0
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = ChimeraPipelineEngine(module_partitions=module_partitions,
engine = ChimeraPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
checkpoint=use_checkpoint)
engine.initialize_optimizer(torch.optim.Adam, lr=1e-3)
input_sample = torch.randn((sample_num, feat_num), device=device)
for _ in range(epoch):
_ = engine.forward_backward(input_sample, forward_only=False)
forward_result = engine.forward_backward(input_sample)
cuda_rpc_result = []
single_result = []
actual_stage_num = engine._get_actual_stage_num()
# compute forward result and backward grad of parameters in cuda rpc
cuda_rpc_result.append(sum(forward_result[0]))
grad = engine.remote_grad()
for stage_id in range(actual_stage_num):
for p in grad[stage_id]:
cuda_rpc_result.append(p)
# compute forward result and backward grad of parameters just in rank_0
test_model = nn.Sequential(
*[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device)
# input_sample = input_sample[len(input_sample) // 2:]
input_sample = input_sample.requires_grad_()
out_val = test_model(input_sample).sum()
autograd.backward(out_val)
single_result.append(out_val)
for p in test_model.parameters():
single_result.append(p.grad)
# print("my")
# print(cuda_rpc_result[1])
# print("answer:")
# print(single_result[1])
# assert len(cuda_rpc_result) == len(single_result)
# for r_c, r_s in zip(cuda_rpc_result, single_result):
# assert_close(r_c, r_s, 0.001, 0.001)
if __name__ == "__main__":

View File

@@ -7,6 +7,16 @@ from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine,
from colossalai.testing import assert_close
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
# global variable for model created
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
@@ -20,20 +30,14 @@ def run_master(args):
optimizer_class = globals()[args.optimizer]
lr = 1e-3
sample_num = 1024
feat_num = 100
h = 100
batch_size = 1024
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
engine = OneFOneBPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
@@ -55,7 +59,8 @@ def run_master(args):
cuda_rpc_result.append(p)
# compute forward result and backward grad of parameters just in rank_0
test_model = nn.Sequential(*module_partitions).to(device)
test_model = nn.Sequential(
*[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device)
optimizer: Optimizer = optimizer_class(test_model.parameters(), lr=lr)
input_sample = input_sample.requires_grad_()
out_val = test_model(input_sample).sum()

View File

@@ -18,17 +18,30 @@ from colossalai.trainer import Trainer, hooks
from colossalai.utils import MultiTimer, get_dataloader
from colossalai.context import ParallelMode
from colossalai.pipeline.pipelinable import PipelinableContext, PipelinableModel
from colossalai.pipeline.rpc._pipeline_schedule import OneFOneBPipelineEngine
from colossalai.pipeline.rpc import OneFOneBPipelineEngine, ChimeraPipelineEngine
from colossalai.pipeline.pipeline_process_group import ppg
def flatten(x):
return torch.flatten(x, 1)
class Flatten(nn.Module):
def partition(pp_rank: int, chunk: int, stage_num: int):
pipelinable = PipelinableContext()
def forward(self, x):
return torch.flatten(x, start_dim=1)
# build model partitions
with pipelinable:
# input : [B, 3, 32, 32]
_ = resnet50()
pipelinable.policy = "customized"
exec_seq = [
'conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'avgpool', (flatten, "behind"), 'fc'
]
pipelinable.to_layer_list(exec_seq)
partition = pipelinable.partition(chunk, stage_num, pp_rank)
return partition
def run_master(args):
@@ -39,37 +52,12 @@ def run_master(args):
stage_num = world_size
num_microbatches = args.num_microbatches
assert chunk == 1
pipelinable = PipelinableContext()
# build model partitions
with pipelinable:
# input : [B, 3, 32, 32]
model = resnet50()
exec_seq = [
'conv1', 'bn1', 'relu', 'maxpool', 'layer1', 'layer2', 'layer3', 'layer4', 'avgpool', (flatten, "behind"), 'fc'
]
pipelinable.to_layer_list(exec_seq)
module_partitions: List[PipelinableModel] = [
pipelinable.partition(chunk, stage_num, pp_rank) for pp_rank in range(world_size)
]
# build dataloader
root = os.environ.get('DATA', './data')
train_dataloader, test_dataloader = build_cifar(batch_size, root, padding=4, crop=32, resize=32)
criterion = nn.CrossEntropyLoss()
partition_1 = module_partitions[0]
partition_2 = []
for model in module_partitions[1]._module_list:
partition_2.append(model)
partition_2.insert(len(partition_2) - 1, Flatten())
partition_2 = nn.Sequential(*partition_2)
module_partitions = [partition_1, partition_2]
pp_engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
pp_engine = OneFOneBPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,

View File

@@ -4,6 +4,16 @@ from torch import nn
from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine, OneFOneBPipelineEngine
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
# global variable for model created
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
@@ -13,22 +23,16 @@ def run_master(args):
stage_num = args.world_size
chunk = args.chunk
num_microbatches = args.num_microbatches
actual_stage_num = stage_num * chunk
use_checkpoint = args.use_checkpoint
sample_num = 1024
feat_num = 10
h = 10
batch_size = 1024
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
engine = OneFOneBPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,

View File

@@ -6,6 +6,15 @@ from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine,
from colossalai.testing import assert_close
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
@@ -18,25 +27,20 @@ def run_master(args):
num_microbatches = args.num_microbatches
sample_num = 1024
feat_num = 100
h = 100
batch_size = 1024
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
engine = OneFOneBPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=chunk,
checkpoint=use_checkpoint)
forward_result = engine.forward_backward(input_sample)[0]
forward_result = engine.forward_backward(input_sample)
cuda_rpc_result = []
single_result = []
@@ -50,7 +54,8 @@ def run_master(args):
cuda_rpc_result.append(p)
# compute forward result and backward grad of parameters just in rank_0
test_model = nn.Sequential(*module_partitions).to(device)
test_model = nn.Sequential(
*[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device)
input_sample = input_sample.requires_grad_()
out_val = test_model(input_sample).sum()
autograd.backward(out_val)

View File

@@ -4,7 +4,7 @@ import torch.distributed.rpc as rpc
import torch.multiprocessing as mp
import pytest
from colossalai.pipeline.pipeline_process_group import PipelineProcessGroup
from colossalai.pipeline.pipeline_process_group import ppg
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from rpc_test_utils import pg_parse_args, rpc_is_initialized
@@ -26,12 +26,12 @@ def run_worker(rank, args):
disable_existing_loggers()
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
pg = PipelineProcessGroup(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
ppg.set_global_info(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
if rpc_is_initialized():
rpc.shutdown()