[pipeline/chimera] test chimera | fix bug of initializing (#1615)

* [pipeline/tuning] improve dispatch performance both time and space cost

* [pipeline/converge] add interface for testing convergence

* [NFC] polish colossalai/utils/multi_tensor_apply/multi_tensor_apply.py code style

* Update PipelineBase.py

* [pipeline/chimera] reconstruct PipelineBase and Worker to support more feasible custom schedule | finish Chimera

* [pipeline/chimera] test chimera | fix bug of initializing
This commit is contained in:
Kirigaya Kazuto
2022-09-20 18:00:39 +08:00
committed by GitHub
parent 504ff1d101
commit 170fa81095
13 changed files with 342 additions and 144 deletions

View File

@@ -8,8 +8,13 @@ import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from torch.optim import SGD, Adam, RMSprop, Optimizer
from torch._C._distributed_rpc import _is_current_rpc_agent_set
import torch.distributed as dist
from colorama import Back, Style
from colossalai.pipeline.pipeline_process_group import ppg
from colossalai.logging import disable_existing_loggers
from colossalai import launch
rpc_is_initialized = _is_current_rpc_agent_set
@@ -25,12 +30,15 @@ class RpcTestModel(nn.Module):
self.rank = stage_id
self.is_last_rank = stage_id == actual_stage_num - 1
self.linear_name = f'linear_{stage_id}'
if stage_id == 0:
setattr(self, self.linear_name, nn.Linear(feat_num, h))
linear = nn.Linear(feat_num, h)
elif stage_id == actual_stage_num - 1:
setattr(self, self.linear_name, nn.Linear(h, 1))
linear = nn.Linear(h, 1)
else:
setattr(self, self.linear_name, nn.Linear(h, h))
linear = nn.Linear(h, h)
setattr(self, self.linear_name, linear)
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
@@ -46,6 +54,8 @@ def parse_args():
parser.add_argument('--epoch', type=int, default=1)
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--dp_degree', type=int, default=1)
parser.add_argument('--tp_degree', type=int, default=1)
parser.add_argument('--num_microbatches', type=int, default=2)
parser.add_argument('--chunk', type=int, default=1)
parser.add_argument('--use_checkpoint', action='store_true')
@@ -74,16 +84,24 @@ def run_worker(rank, args, master_func):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
# config rpc
# if cuda is used, set_device_map is a must is configured
# for cuda is not supported in torch rpc by default
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=args.num_worker_threads)
device = args.device
world_size = args.world_size
for rank_idx in range(world_size):
options.set_device_map(f'work{rank_idx}', {rank: rank_idx})
dp_degree = args.dp_degree
tp_degree = args.tp_degree
num_worker_threads = args.num_worker_threads
host = args.master_addr
port = args.master_port
backend = 'nccl' if device == 'cuda' else 'gloo'
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
disable_existing_loggers()
launch(dict(), rank, world_size, host, int(port), backend, verbose=False)
ppg.set_global_info(rank=rank,
world_size=world_size,
dp_degree=dp_degree,
tp_degree=tp_degree,
num_worker_threads=num_worker_threads,
device=device)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0: