[pipeline/chimera] test chimera | fix bug of initializing (#1615)

* [pipeline/tuning] improve dispatch performance both time and space cost

* [pipeline/converge] add interface for testing convergence

* [NFC] polish colossalai/utils/multi_tensor_apply/multi_tensor_apply.py code style

* Update PipelineBase.py

* [pipeline/chimera] reconstruct PipelineBase and Worker to support more feasible custom schedule | finish Chimera

* [pipeline/chimera] test chimera | fix bug of initializing
This commit is contained in:
Kirigaya Kazuto
2022-09-20 18:00:39 +08:00
committed by GitHub
parent 504ff1d101
commit 170fa81095
13 changed files with 342 additions and 144 deletions

View File

@@ -7,6 +7,16 @@ from colossalai.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine,
from colossalai.testing import assert_close
from rpc_test_utils import rpc_run, parse_args, RpcTestModel
# global variable for model created
feat_num = 100
h = 100
def partition(pp_rank: int, chunk: int, stage_num: int):
torch.manual_seed(1024)
partition = RpcTestModel(pp_rank, stage_num, feat_num, h)
return partition
def run_master(args):
torch.manual_seed(100)
@@ -20,20 +30,14 @@ def run_master(args):
optimizer_class = globals()[args.optimizer]
lr = 1e-3
sample_num = 1024
feat_num = 100
h = 100
batch_size = 1024
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [RpcTestModel(pp_rank, actual_stage_num, feat_num, h) for pp_rank in range(actual_stage_num)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
engine = OneFOneBPipelineEngine(partition_fn=partition,
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
@@ -55,7 +59,8 @@ def run_master(args):
cuda_rpc_result.append(p)
# compute forward result and backward grad of parameters just in rank_0
test_model = nn.Sequential(*module_partitions).to(device)
test_model = nn.Sequential(
*[partition(pp_rank, chunk, actual_stage_num) for pp_rank in range(actual_stage_num)]).to(device)
optimizer: Optimizer = optimizer_class(test_model.parameters(), lr=lr)
input_sample = input_sample.requires_grad_()
out_val = test_model(input_sample).sum()