mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
[misc] resolve code factor issues (#4433)
This commit is contained in:
@@ -57,7 +57,7 @@ class BertPipelineForwards:
|
||||
hidden_states: Optional[torch.FloatTensor] = None, # this is from the previous stage
|
||||
stage_index: Optional[List[int]] = None,
|
||||
):
|
||||
# TODO: add explaination of the output here.
|
||||
# TODO(jianghai): add explaination of the output here.
|
||||
r"""
|
||||
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
||||
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
|
||||
@@ -113,7 +113,7 @@ class BertPipelineForwards:
|
||||
batch_size, seq_length = input_shape
|
||||
device = hidden_states.device
|
||||
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
@@ -272,7 +272,7 @@ class BertPipelineForwards:
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
# TODO: left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
# TODO(jianghai) left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
||||
if output_attentions:
|
||||
logger.warning_once('output_attentions=True is not supported for pipeline models at the moment.')
|
||||
output_attentions = False
|
||||
@@ -534,7 +534,7 @@ class BertPipelineForwards:
|
||||
stage_index: Optional[List[int]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
#-> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
||||
# -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||||
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
||||
|
Reference in New Issue
Block a user