mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-07-07 20:39:48 +00:00
fix format (#563)
This commit is contained in:
parent
ce8a3eae5b
commit
1762ba14ab
@ -9,32 +9,29 @@
|
|||||||
// Stringstream is a big hammer, but I want to rely on operator<< for dtype.
|
// Stringstream is a big hammer, but I want to rely on operator<< for dtype.
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
||||||
#include "type_shim.h"
|
|
||||||
#include "multi_tensor_apply.cuh"
|
#include "multi_tensor_apply.cuh"
|
||||||
|
#include "type_shim.h"
|
||||||
|
|
||||||
#define BLOCK_SIZE 512
|
#define BLOCK_SIZE 512
|
||||||
#define ILP 4
|
#define ILP 4
|
||||||
|
|
||||||
template<typename T>
|
template <typename T> __device__ __forceinline__ bool is_aligned(T *p) {
|
||||||
__device__ __forceinline__ bool is_aligned(T* p){
|
return ((uint64_t)p) % (ILP * sizeof(T)) == 0;
|
||||||
return ((uint64_t)p) % (ILP*sizeof(T)) == 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename T>
|
template <typename T>
|
||||||
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
|
__device__ __forceinline__ void load_store(T *dst, T *src, int dst_offset,
|
||||||
typedef typename std::aligned_storage<ILP*sizeof(T), ILP*alignof(T)>::type LT;
|
int src_offset) {
|
||||||
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
|
typedef
|
||||||
|
typename std::aligned_storage<ILP * sizeof(T), ILP * alignof(T)>::type LT;
|
||||||
|
((LT *)dst)[dst_offset] = ((LT *)src)[src_offset];
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename in_t, typename out_t>
|
template <typename in_t, typename out_t> struct ScaleFunctor {
|
||||||
struct ScaleFunctor
|
__device__ __forceinline__ void operator()(int chunk_size,
|
||||||
{
|
volatile int *noop_gmem,
|
||||||
__device__ __forceinline__ void operator()(
|
TensorListMetadata<2> &tl,
|
||||||
int chunk_size,
|
float scale) {
|
||||||
volatile int* noop_gmem,
|
|
||||||
TensorListMetadata<2>& tl,
|
|
||||||
float scale)
|
|
||||||
{
|
|
||||||
// I'd like this kernel to propagate infs/nans.
|
// I'd like this kernel to propagate infs/nans.
|
||||||
// if(*noop_gmem == 1)
|
// if(*noop_gmem == 1)
|
||||||
// return;
|
// return;
|
||||||
@ -43,93 +40,85 @@ struct ScaleFunctor
|
|||||||
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
int chunk_idx = tl.block_to_chunk[blockIdx.x];
|
||||||
int n = tl.sizes[tensor_loc];
|
int n = tl.sizes[tensor_loc];
|
||||||
|
|
||||||
in_t* in = (in_t*)tl.addresses[0][tensor_loc];
|
in_t *in = (in_t *)tl.addresses[0][tensor_loc];
|
||||||
in += chunk_idx*chunk_size;
|
in += chunk_idx * chunk_size;
|
||||||
|
|
||||||
out_t* out = (out_t*)tl.addresses[1][tensor_loc];
|
out_t *out = (out_t *)tl.addresses[1][tensor_loc];
|
||||||
out += chunk_idx*chunk_size;
|
out += chunk_idx * chunk_size;
|
||||||
|
|
||||||
n -= chunk_idx*chunk_size;
|
n -= chunk_idx * chunk_size;
|
||||||
|
|
||||||
bool finite = true;
|
bool finite = true;
|
||||||
in_t r_in[ILP];
|
in_t r_in[ILP];
|
||||||
out_t r_out[ILP];
|
out_t r_out[ILP];
|
||||||
|
|
||||||
// to make things simple, we put aligned case in a different code path
|
// to make things simple, we put aligned case in a different code path
|
||||||
if(n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) && is_aligned(out))
|
if (n % ILP == 0 && chunk_size % ILP == 0 && is_aligned(in) &&
|
||||||
{
|
is_aligned(out)) {
|
||||||
for(int i_start = threadIdx.x; i_start*ILP < n && i_start*ILP < chunk_size; i_start += blockDim.x)
|
for (int i_start = threadIdx.x;
|
||||||
{
|
i_start * ILP < n && i_start * ILP < chunk_size;
|
||||||
|
i_start += blockDim.x) {
|
||||||
// load
|
// load
|
||||||
load_store(r_in, in, 0 , i_start);
|
load_store(r_in, in, 0, i_start);
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for(int ii = 0; ii < ILP; ii++)
|
for (int ii = 0; ii < ILP; ii++) {
|
||||||
{
|
|
||||||
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
||||||
finite = finite && isfinite(r_in[ii]);
|
finite = finite && isfinite(r_in[ii]);
|
||||||
}
|
}
|
||||||
// store
|
// store
|
||||||
load_store(out, r_out, i_start, 0);
|
load_store(out, r_out, i_start, 0);
|
||||||
}
|
}
|
||||||
}
|
} else {
|
||||||
else
|
|
||||||
{
|
|
||||||
// Non-divergent exit condition for __syncthreads, not necessary here
|
// Non-divergent exit condition for __syncthreads, not necessary here
|
||||||
for(int i_start = 0; i_start < n && i_start < chunk_size; i_start += blockDim.x*ILP)
|
for (int i_start = 0; i_start < n && i_start < chunk_size;
|
||||||
{
|
i_start += blockDim.x * ILP) {
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for(int ii = 0; ii < ILP; ii++)
|
for (int ii = 0; ii < ILP; ii++) {
|
||||||
{
|
|
||||||
r_in[ii] = 0;
|
r_in[ii] = 0;
|
||||||
int i = i_start + threadIdx.x + ii*blockDim.x;
|
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||||
if(i < n && i < chunk_size)
|
if (i < n && i < chunk_size)
|
||||||
r_in[ii] = in[i];
|
r_in[ii] = in[i];
|
||||||
}
|
}
|
||||||
// note for clarification to future michael:
|
// note for clarification to future michael:
|
||||||
// From a pure memory dependency perspective, there's likely no point unrolling
|
// From a pure memory dependency perspective, there's likely no point
|
||||||
// the write loop, since writes just fire off once their LDGs arrive.
|
// unrolling the write loop, since writes just fire off once their LDGs
|
||||||
// Put another way, the STGs are dependent on the LDGs, but not on each other.
|
// arrive. Put another way, the STGs are dependent on the LDGs, but not
|
||||||
// There is still compute ILP benefit from unrolling the loop though.
|
// on each other. There is still compute ILP benefit from unrolling the
|
||||||
|
// loop though.
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for(int ii = 0; ii < ILP; ii++)
|
for (int ii = 0; ii < ILP; ii++) {
|
||||||
{
|
|
||||||
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
r_out[ii] = static_cast<float>(r_in[ii]) * scale;
|
||||||
finite = finite && isfinite(r_in[ii]);
|
finite = finite && isfinite(r_in[ii]);
|
||||||
}
|
}
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for(int ii = 0; ii < ILP; ii++)
|
for (int ii = 0; ii < ILP; ii++) {
|
||||||
{
|
int i = i_start + threadIdx.x + ii * blockDim.x;
|
||||||
int i = i_start + threadIdx.x + ii*blockDim.x;
|
if (i < n && i < chunk_size)
|
||||||
if(i < n && i < chunk_size)
|
|
||||||
out[i] = r_out[ii];
|
out[i] = r_out[ii];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if(!finite)
|
if (!finite)
|
||||||
*noop_gmem = 1; // Blindly fire off a write. These will race but that's ok.
|
*noop_gmem =
|
||||||
|
1; // Blindly fire off a write. These will race but that's ok.
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
void multi_tensor_scale_cuda(
|
void multi_tensor_scale_cuda(int chunk_size, at::Tensor noop_flag,
|
||||||
int chunk_size,
|
std::vector<std::vector<at::Tensor>> tensor_lists,
|
||||||
at::Tensor noop_flag,
|
float scale) {
|
||||||
std::vector<std::vector<at::Tensor>> tensor_lists,
|
|
||||||
float scale)
|
|
||||||
{
|
|
||||||
using namespace at;
|
using namespace at;
|
||||||
// The output (downscaled) type is always float.
|
// The output (downscaled) type is always float.
|
||||||
// If build times suffer, think about where to put this dispatch,
|
// If build times suffer, think about where to put this dispatch,
|
||||||
// and what logic should be moved out of multi_tensor_apply.
|
// and what logic should be moved out of multi_tensor_apply.
|
||||||
|
|
||||||
DISPATCH_FLOAT_AND_HALF(tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda",
|
DISPATCH_FLOAT_AND_HALF(
|
||||||
DISPATCH_FLOAT_AND_HALF(tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda",
|
tensor_lists[0][0].scalar_type(), 0, "multi_tensor_scale_cuda",
|
||||||
multi_tensor_apply<2>(
|
DISPATCH_FLOAT_AND_HALF(
|
||||||
BLOCK_SIZE,
|
tensor_lists[1][0].scalar_type(), 1, "multi_tensor_scale_cuda",
|
||||||
chunk_size,
|
multi_tensor_apply<2>(BLOCK_SIZE, chunk_size, noop_flag, tensor_lists,
|
||||||
noop_flag,
|
ScaleFunctor<scalar_t_0, scalar_t_1>(),
|
||||||
tensor_lists,
|
scale);))
|
||||||
ScaleFunctor<scalar_t_0, scalar_t_1>(),
|
|
||||||
scale); ))
|
|
||||||
AT_CUDA_CHECK(cudaGetLastError());
|
AT_CUDA_CHECK(cudaGetLastError());
|
||||||
|
|
||||||
// AT_CUDA_CHECK(cudaDeviceSynchronize());
|
// AT_CUDA_CHECK(cudaDeviceSynchronize());
|
||||||
|
Loading…
Reference in New Issue
Block a user