mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-03 18:19:58 +00:00
[auto-parallel] add auto-offload feature (#3154)
* add auto-offload feature * polish code * fix syn offload runtime pass bug * add offload example * fix offload testing bug * fix example testing bug
This commit is contained in:
49
colossalai/auto_parallel/offload/mem_optimize.py
Normal file
49
colossalai/auto_parallel/offload/mem_optimize.py
Normal file
@@ -0,0 +1,49 @@
|
||||
from typing import Dict
|
||||
import torch
|
||||
import torch.fx
|
||||
from torch.fx import GraphModule
|
||||
from torch.utils._pytree import tree_map
|
||||
|
||||
from colossalai.fx import ColoTracer, is_compatible_with_meta
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
|
||||
from .region_manager import RegionManager
|
||||
from .runtime import runtime_syn_offload_apply_pass, runtime_asyn_offload_apply_pass
|
||||
from .base_offload_module import BaseOffloadModule
|
||||
from .util import compute_max_param_mem, compute_total_param_mem, compute_act_peak_mem, GlobalRuntimeInfo
|
||||
|
||||
def memory_optimize(model: torch.nn.Module,
|
||||
inps: Dict[str, torch.Tensor],
|
||||
memory_budget: float = -1.0,
|
||||
solver_name: str = 'asyn'):
|
||||
|
||||
model = model.cpu().half()
|
||||
tracer = ColoTracer()
|
||||
assert is_compatible_with_meta()
|
||||
wrap_fn = lambda x: x.to("meta") if isinstance(x, torch.Tensor) else x
|
||||
meta_args = tree_map(wrap_fn, inps)
|
||||
graph = tracer.trace(model, meta_args=meta_args)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
interp = MetaInfoProp(gm)
|
||||
interp.propagate(*meta_args.values())
|
||||
|
||||
region_manager = RegionManager(graph, solver_name=solver_name, memory_budget=memory_budget)
|
||||
region_manager._build_regions()
|
||||
GlobalRuntimeInfo.region_list = region_manager.region_list
|
||||
|
||||
act_peak_mem = compute_act_peak_mem(region_manager.region_list) / 1024 ** 2
|
||||
max_param_mem = compute_max_param_mem(region_manager.region_list) / 1024 ** 2
|
||||
total_param_mem = compute_total_param_mem(region_manager.region_list) / 1024 ** 2
|
||||
print(
|
||||
f"act_peak_mem={act_peak_mem:.3f} MB | max_param_mem={max_param_mem:.3f} MB | total_param_mem={total_param_mem:.3f}")
|
||||
|
||||
if solver_name == 'syn':
|
||||
gm = runtime_syn_offload_apply_pass(gm, region_manager.region_list)
|
||||
elif solver_name == 'asyn':
|
||||
gm = runtime_asyn_offload_apply_pass(gm, region_manager.region_list)
|
||||
else:
|
||||
raise TypeError(f"Unknown solver name {solver_name}!")
|
||||
|
||||
gm.recompile()
|
||||
optimized_model = BaseOffloadModule(gm, region_manager, solver_name=='syn')
|
||||
return optimized_model
|
Reference in New Issue
Block a user