mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2026-01-05 07:34:30 +00:00
[auto-parallel] add auto-offload feature (#3154)
* add auto-offload feature * polish code * fix syn offload runtime pass bug * add offload example * fix offload testing bug * fix example testing bug
This commit is contained in:
62
tests/test_auto_parallel/test_offload/test_solver.py
Normal file
62
tests/test_auto_parallel/test_offload/test_solver.py
Normal file
@@ -0,0 +1,62 @@
|
||||
import pytest
|
||||
import torch.fx
|
||||
from torch.fx import GraphModule
|
||||
from torch.utils._pytree import tree_map
|
||||
|
||||
from colossalai.fx import ColoTracer, is_compatible_with_meta
|
||||
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
||||
from colossalai.auto_parallel.offload.region_manager import RegionManager
|
||||
from colossalai.auto_parallel.offload.solver import SolverFactory, NOT_NVML
|
||||
from colossalai.testing import parameterize
|
||||
from tests.test_auto_parallel.test_offload.model_utils import *
|
||||
|
||||
@pytest.mark.skipif(NOT_NVML, reason='pynvml is not installed')
|
||||
@parameterize('model_name', ['gpt2_', 'bert_'])
|
||||
@parameterize('memory_budget', [4000])
|
||||
@parameterize('solver_name', ['syn', 'asyn'])
|
||||
def solver_test(model_name: str,
|
||||
memory_budget: float,
|
||||
solver_name: str):
|
||||
|
||||
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
||||
model_builder, data_gen = get_components_func()
|
||||
data_args = data_gen(device="cpu")
|
||||
wrap_fn = lambda x: x.to(dtype=torch.half) if isinstance(x, torch.Tensor) and torch.is_floating_point(x) else x
|
||||
data_args = tree_map(wrap_fn, data_args)
|
||||
model = model_builder()
|
||||
model.train()
|
||||
model = model.cpu().half()
|
||||
|
||||
tracer = ColoTracer()
|
||||
assert is_compatible_with_meta()
|
||||
wrap_fn = lambda x: x.to("meta") if isinstance(x, torch.Tensor) else x
|
||||
meta_args = tree_map(wrap_fn, data_args)
|
||||
graph = tracer.trace(model, meta_args=meta_args)
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
|
||||
interp = MetaInfoProp(gm)
|
||||
interp.propagate(*meta_args.values())
|
||||
|
||||
region_manager = RegionManager(graph, solver_name=solver_name)
|
||||
region_manager._pre_process()
|
||||
region_list = region_manager.region_list
|
||||
|
||||
solver_cls = SolverFactory.create(solver_name)
|
||||
memory_budget = memory_budget * 1024 * 1024
|
||||
solver = solver_cls(region_list, memory_budget)
|
||||
solver._call_solver()
|
||||
|
||||
assert solver.best_ts.peak_mem < memory_budget
|
||||
|
||||
print("****************** execution plan *******************")
|
||||
for region in region_list:
|
||||
need_offload = region.need_offload
|
||||
to_prefetch = region.fwd_prefetch_region.r_id if region.fwd_prefetch_region is not None else None
|
||||
print(f'| {model_name} forward | region id: {region.r_id} | need_offload: {need_offload} | to_prefetch: {to_prefetch}')
|
||||
for region in region_list.__reversed__():
|
||||
need_offload = region.need_offload
|
||||
to_prefetch = region.bwd_prefetch_region.r_id if region.bwd_prefetch_region is not None else None
|
||||
print(f'| {model_name} backward | region id: {region.r_id} | need_offload: {need_offload} | to_prefetch: {to_prefetch}')
|
||||
|
||||
if __name__ == '__main__':
|
||||
solver_test()
|
||||
Reference in New Issue
Block a user