[feat] Dist Loader for Eval (#5950)

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* support auto distributed data loader

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* fix tp error

* remove unused parameters

* remove unused

* update inference

* update docs

* update inference

---------

Co-authored-by: Michelle <qianranma8@gmail.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Tong Li
2024-08-02 10:06:25 +08:00
committed by GitHub
parent 62cdac6b7b
commit 19d1510ea2
15 changed files with 93 additions and 77 deletions

View File

@@ -5,6 +5,8 @@ from typing import Dict, List
import torch.distributed as dist
from colossal_eval import dataset, models, utils
from colossal_eval.dataset.base import DistributedDataset
from torch.utils.data import DataLoader, DistributedSampler
import colossalai
from colossalai.accelerator import get_accelerator
@@ -13,6 +15,7 @@ from colossalai.logging import get_dist_logger
from colossalai.shardformer import ShardConfig
logger = get_dist_logger()
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def rm_and_merge(
@@ -54,7 +57,8 @@ def rm_and_merge(
)
else:
rank_answers = utils.jload(directory)
answers["data"].extend(rank_answers["data"])
deduplidate_answers = [x for x in rank_answers["data"] if x not in answers["data"]]
answers["data"].extend(deduplidate_answers)
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
for r in range(dp_size):
@@ -65,7 +69,7 @@ def rm_and_merge(
os.remove(directory)
except Exception as e:
print(e)
print(len(answers["data"]))
all_answers[category] = answers
all_answers_with_dataset_class["inference_results"] = all_answers
@@ -108,7 +112,12 @@ def main(args):
tp_rank = coordinates[TP_AXIS]
shard_config = (
ShardConfig(tensor_parallel_process_group=tp_group, enable_tensor_parallelism=args.tp_size > 1)
ShardConfig(
tensor_parallel_process_group=tp_group,
enable_tensor_parallelism=args.tp_size > 1,
parallel_output=False,
enable_all_optimization=True,
)
if args.tp_size > 1
else None
)
@@ -183,6 +192,7 @@ def main(args):
model_name = model_parameter["name"]
model_class = eval(f"models.{model_parameter['model_class']}")
paramerters = model_parameter["parameters"]
batch_size = paramerters["batch_size"]
paramerters.update({"logger": logger})
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
paramerters.update({"shard_config": shard_config})
@@ -192,7 +202,6 @@ def main(args):
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
for dataset_name, split_data in inference_data.items():
start = 0
prev_questions = None
for category, category_data in split_data.items():
num_turn = category_data["inference_kwargs"].get("turns", 1)
@@ -201,26 +210,33 @@ def main(args):
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
answers_to_dump = copy.deepcopy(category_data)
partition_size = len(category_data["data"]) // dp_size
redundant = len(category_data["data"]) % dp_size
# Ensure that the amount of data for inference is as consistent as possible across different processes.
lengths = [partition_size for _ in range(dp_size)]
for j in range(redundant):
lengths[(j + start) % dp_size] += 1
start = (start + redundant) % dp_size
for turn in range(num_turn):
if turn == 0:
questions = category_data["data"][
sum(lengths[0:dp_rank]) : sum(lengths[0:dp_rank]) + lengths[dp_rank]
]
dist_dataset = DistributedDataset(category_data["data"])
else:
questions = prev_questions
dist_dataset = DistributedDataset(prev_questions)
sampler = DistributedSampler(
dist_dataset,
num_replicas=pg_mesh.size(DP_AXIS),
rank=pg_mesh.coordinate(DP_AXIS),
shuffle=False,
)
questions_loader = DataLoader(
dist_dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=8,
pin_memory=True,
collate_fn=lambda x: x,
)
category_data["inference_kwargs"]["dataset"] = dataset_name
category_data["inference_kwargs"]["category"] = category
answers_per_rank = model_.inference(
questions, inference_kwargs=category_data["inference_kwargs"], debug=debug_args[dataset_name]
data_loader=questions_loader,
inference_kwargs=category_data["inference_kwargs"],
debug=debug_args[dataset_name],
)
prev_questions = answers_per_rank