mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-04 18:40:28 +00:00
[shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462) * [extension] update api * [feature] add colo attention * [feature] update sdpa * [feature] update npu attention * [feature] update flash-attn * [test] add flash attn test * [test] update flash attn test * [shardformer] update modeling to fit colo attention (#5465) * [misc] refactor folder structure * [shardformer] update llama flash-attn * [shardformer] fix llama policy * [devops] update tensornvme install * [test] update llama test * [shardformer] update colo attn kernel dispatch * [shardformer] update blip2 * [shardformer] update chatglm * [shardformer] update gpt2 * [shardformer] update gptj * [shardformer] update opt * [shardformer] update vit * [shardformer] update colo attention mask prep * [shardformer] update whisper * [test] fix shardformer tests (#5514) * [test] fix shardformer tests * [test] fix shardformer tests
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
""" PyTorch ChatGLM model. """
|
||||
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
@@ -9,63 +10,49 @@ from transformers.utils import logging
|
||||
|
||||
from colossalai.pipeline.stage_manager import PipelineStageManager
|
||||
from colossalai.shardformer import ShardConfig
|
||||
from colossalai.shardformer.layer import AttnMaskType, ColoAttention
|
||||
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
|
||||
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMModel
|
||||
|
||||
|
||||
def get_flash_core_attention_forward():
|
||||
from colossalai.nn.layer.colo_attention import AttnMaskType, ColoAttention
|
||||
|
||||
from .chatglm2_6b.modeling_chatglm import CoreAttention
|
||||
|
||||
def forward(self: CoreAttention, query_layer, key_layer, value_layer, attention_mask):
|
||||
pytorch_major_version = int(torch.__version__.split(".")[0])
|
||||
if pytorch_major_version >= 2:
|
||||
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
||||
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_layer, key_layer, value_layer, is_causal=True
|
||||
)
|
||||
else:
|
||||
if attention_mask is not None:
|
||||
attention_mask = ~attention_mask
|
||||
context_layer = torch.nn.functional.scaled_dot_product_attention(
|
||||
query_layer, key_layer, value_layer, attention_mask
|
||||
)
|
||||
context_layer = context_layer.permute(2, 0, 1, 3)
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||
context_layer = context_layer.reshape(*new_context_layer_shape)
|
||||
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
|
||||
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
|
||||
attention_mask_type = AttnMaskType.CAUSAL
|
||||
attn_bias = torch.zeros(
|
||||
query_layer.shape[0],
|
||||
1,
|
||||
query_layer.shape[2],
|
||||
key_layer.shape[2],
|
||||
dtype=query_layer.dtype,
|
||||
device=query_layer.device,
|
||||
)
|
||||
temp_mask = (
|
||||
torch.ones(query_layer.shape[2], key_layer.shape[2], dtype=torch.bool, device=query_layer.device)
|
||||
.tril(diagonal=0)
|
||||
.expand(query_layer.shape[0], 1, -1, -1)
|
||||
)
|
||||
attn_bias.masked_fill_(temp_mask.logical_not(), torch.finfo(query_layer.dtype).min)
|
||||
else:
|
||||
# Raw attention scores
|
||||
query_layer = query_layer.permute(1, 0, 2, 3).contiguous()
|
||||
key_layer = key_layer.permute(1, 0, 2, 3).contiguous()
|
||||
value_layer = value_layer.permute(1, 0, 2, 3).contiguous()
|
||||
|
||||
scale = 1.0 / self.norm_factor
|
||||
if self.coeff is not None:
|
||||
scale = scale * self.coeff
|
||||
|
||||
flash_attention_mask = None
|
||||
attn_mask_type = None
|
||||
if attention_mask is None:
|
||||
attn_mask_type = AttnMaskType.causal
|
||||
else:
|
||||
flash_attention_mask = ~(attention_mask[:, :, -1].squeeze(1).to(torch.bool)).contiguous()
|
||||
if not torch.all(flash_attention_mask):
|
||||
attn_mask_type = AttnMaskType.paddedcausal
|
||||
|
||||
attention = ColoAttention(
|
||||
embed_dim=self.hidden_size_per_partition,
|
||||
num_heads=self.num_attention_heads_per_partition,
|
||||
dropout=self.attention_dropout.p,
|
||||
scale=scale,
|
||||
)
|
||||
context_layer = attention(
|
||||
query_layer, key_layer, value_layer, attn_mask=flash_attention_mask, attn_mask_type=attn_mask_type
|
||||
)
|
||||
|
||||
context_layer = context_layer.permute(1, 0, -1).contiguous()
|
||||
|
||||
attention_mask_type = AttnMaskType.CUSTOM
|
||||
if attention_mask is not None:
|
||||
attn_bias = torch.zeros_like(attention_mask, dtype=query_layer.dtype)
|
||||
attn_bias.masked_fill_(attention_mask, torch.finfo(query_layer.dtype).min)
|
||||
dropout_p = self.attention_dropout.p if self.training else 0.0
|
||||
context_layer = ColoAttention.attention(
|
||||
query_layer,
|
||||
key_layer,
|
||||
value_layer,
|
||||
attention_mask=attn_bias,
|
||||
attention_mask_type=attention_mask_type,
|
||||
dropout_p=dropout_p,
|
||||
)
|
||||
context_layer = context_layer.permute(2, 0, 1, 3)
|
||||
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
|
||||
context_layer = context_layer.reshape(*new_context_layer_shape)
|
||||
return context_layer
|
||||
|
||||
return forward
|
||||
@@ -169,11 +156,17 @@ class ChatGLMPipelineForwards:
|
||||
if self.pre_seq_len is not None:
|
||||
if past_key_values is None:
|
||||
past_key_values = self.get_prompt(
|
||||
batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype
|
||||
batch_size=batch_size,
|
||||
device=input_ids.device,
|
||||
dtype=inputs_embeds.dtype,
|
||||
)
|
||||
if attention_mask is not None:
|
||||
attention_mask = torch.cat(
|
||||
[attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask], dim=-1
|
||||
[
|
||||
attention_mask.new_ones((batch_size, self.pre_seq_len)),
|
||||
attention_mask,
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
if full_attention_mask is None:
|
||||
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
|
||||
@@ -200,7 +193,9 @@ class ChatGLMPipelineForwards:
|
||||
|
||||
if shard_config.enable_sequence_parallelism:
|
||||
hidden_states = split_forward_gather_backward(
|
||||
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
|
||||
hidden_states,
|
||||
dim=0,
|
||||
process_group=shard_config.tensor_parallel_process_group,
|
||||
)
|
||||
for idx in range(start_idx, end_idx):
|
||||
layer = self.encoder._get_layer(idx)
|
||||
@@ -208,7 +203,12 @@ class ChatGLMPipelineForwards:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
if self.encoder.gradient_checkpointing and self.encoder.training:
|
||||
layer_ret = torch.utils.checkpoint.checkpoint(
|
||||
layer, hidden_states, attention_mask, rotary_pos_emb, past_key_values[idx], use_cache
|
||||
layer,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
rotary_pos_emb,
|
||||
past_key_values[idx],
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
layer_ret = layer(
|
||||
@@ -224,7 +224,9 @@ class ChatGLMPipelineForwards:
|
||||
|
||||
if shard_config.enable_sequence_parallelism:
|
||||
hidden_states = gather_forward_split_backward(
|
||||
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
|
||||
hidden_states,
|
||||
dim=0,
|
||||
process_group=shard_config.tensor_parallel_process_group,
|
||||
)
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
@@ -234,7 +236,14 @@ class ChatGLMPipelineForwards:
|
||||
hidden_states = self.encoder.final_layernorm(hidden_states)
|
||||
if not return_dict:
|
||||
return tuple(
|
||||
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
|
||||
v
|
||||
for v in [
|
||||
hidden_states,
|
||||
presents,
|
||||
all_hidden_states,
|
||||
all_self_attentions,
|
||||
]
|
||||
if v is not None
|
||||
)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
@@ -368,7 +377,9 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
||||
# Run encoder.
|
||||
# [seq_len, batch_size, hidden_size] -> [seq_len/TP_size, batch_size, hidden_size]
|
||||
inputs_embeds = split_forward_gather_backward(
|
||||
inputs_embeds, dim=0, process_group=shard_config.tensor_parallel_process_group
|
||||
inputs_embeds,
|
||||
dim=0,
|
||||
process_group=shard_config.tensor_parallel_process_group,
|
||||
)
|
||||
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
|
||||
inputs_embeds,
|
||||
@@ -380,7 +391,9 @@ def get_chatglm_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
||||
)
|
||||
|
||||
hidden_states = gather_forward_split_backward(
|
||||
hidden_states, dim=0, process_group=shard_config.tensor_parallel_process_group
|
||||
hidden_states,
|
||||
dim=0,
|
||||
process_group=shard_config.tensor_parallel_process_group,
|
||||
)
|
||||
|
||||
if not return_dict:
|
||||
|
Reference in New Issue
Block a user