[shardformer] update colo attention to support custom mask (#5510)

* [feature] refactor colo attention (#5462)

* [extension] update api

* [feature] add colo attention

* [feature] update sdpa

* [feature] update npu attention

* [feature] update flash-attn

* [test] add flash attn test

* [test] update flash attn test

* [shardformer] update modeling to fit colo attention (#5465)

* [misc] refactor folder structure

* [shardformer] update llama flash-attn

* [shardformer] fix llama policy

* [devops] update tensornvme install

* [test] update llama test

* [shardformer] update colo attn kernel dispatch

* [shardformer] update blip2

* [shardformer] update chatglm

* [shardformer] update gpt2

* [shardformer] update gptj

* [shardformer] update opt

* [shardformer] update vit

* [shardformer] update colo attention mask prep

* [shardformer] update whisper

* [test] fix shardformer tests (#5514)

* [test] fix shardformer tests

* [test] fix shardformer tests
This commit is contained in:
Hongxin Liu
2024-03-27 11:19:32 +08:00
committed by GitHub
parent 9a3321e9f4
commit 19e1a5cf16
45 changed files with 2543 additions and 1170 deletions

View File

@@ -29,7 +29,13 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
)
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
org_model,
sharded_model,
sharded_optimizer,
data_gen_fn,
output_transform_fn,
criterion,
booster,
)
stage_manager = booster.plugin.stage_manager
@@ -39,7 +45,10 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
opt_model = unwrap_model(org_model, "OPTModel", "model")
shard_opt_model = unwrap_model(sharded_model, "OPTModel", "model")
row_layer_for_check = ["decoder.layers[0].self_attn.q_proj", "decoder.embed_tokens"] # 'decoder.embed_tokens'
row_layer_for_check = [
"decoder.layers[0].self_attn.q_proj",
"decoder.embed_tokens",
] # 'decoder.embed_tokens'
col_layer_for_check = ["decoder.layers[0].self_attn.out_proj"]
# Save gradient tensors for comparison between the original model and the sharded model.
@@ -50,10 +59,24 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
else:
atol, rtol = 4e-2, 4e-2
row_layer_grads = get_grad_tensors_for_check(
opt_model, shard_opt_model, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False
opt_model,
shard_opt_model,
row_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=0,
verbose=False,
)
col_layer_grads = get_grad_tensors_for_check(
opt_model, shard_opt_model, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
opt_model,
shard_opt_model,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
grads_to_check.update(col_layer_grads)
grads_to_check.update(row_layer_grads)
@@ -80,7 +103,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
else:
atol, rtol = 5e-3, 5e-3
check_weight(
opt_model, shard_opt_model, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False
opt_model,
shard_opt_model,
col_layer_for_check,
tp_group,
atol=atol,
rtol=rtol,
dim=1,
verbose=False,
)
# check grads
@@ -110,8 +140,20 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
"use_lazy_init": False,
"precision": "fp32",
},
{"tp_size": 4, "pp_size": 1, "enable_all_optimization": True, "use_lazy_init": False, "precision": "fp32"},
{"tp_size": 2, "pp_size": 1, "enable_all_optimization": True, "use_lazy_init": False, "precision": "fp32"},
{
"tp_size": 4,
"pp_size": 1,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 1,
"enable_all_optimization": False,
"use_lazy_init": False,
"precision": "fp32",
},
{
"tp_size": 2,
"pp_size": 1,
@@ -135,7 +177,13 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
)
def run_opt_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_opt")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
for name, (
model_fn,
data_gen_fn,
output_transform_fn,
loss_fn,
_,
) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
@@ -169,7 +217,13 @@ def run_opt_test(test_config):
def run_opt_3d_test(test_config):
sub_model_zoo = model_zoo.get_sub_registry("transformers_opt")
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
for name, (
model_fn,
data_gen_fn,
output_transform_fn,
loss_fn,
_,
) in sub_model_zoo.items():
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
clear_layout_converter()
@@ -178,13 +232,27 @@ def run_opt_3d_test(test_config):
def check_OPTModel(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
colossalai.launch(
config={},
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
run_opt_test()
def check_opt_3d(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
colossalai.launch(
config={},
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
run_opt_3d_test()