[hotfix] Add layer norm gradients all-reduce for sequence parallel (#4926)

* [hotfix] Add layer norm gradients all-reduce for sequence parallel. (#4915)

* Add layer norm gradients all-reduce for sequence parallel.

* skip pipeline inference test

* [hotfix] fixing polices of sequence parallel (#4922)

* Add layer norm gradients all-reduce for sequence parallel.

* fix parameter passing when calling get_autopolicy

---------

Co-authored-by: littsk <1214689160@qq.com>

* Hotfix/add grad all reduce for sequence parallel (#4927)

* Add layer norm gradients all-reduce for sequence parallel.


* fix parameter passing when calling get_autopolicy

* fix bug using wrong variables

---------

Co-authored-by: littsk <1214689160@qq.com>

* fix policy initialization

* fix bloom and chatglm policices

* polish code of handling layernorm

* fix moe module

* polish code of class initializing

---------

Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
This commit is contained in:
littsk
2023-11-03 13:32:43 +08:00
committed by GitHub
parent d99b2c961a
commit 1a3315e336
30 changed files with 1120 additions and 552 deletions

View File

@@ -700,7 +700,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
############################
# this method is used to sync gradient manually
def sync_grad(self):
def _sync_grad(self):
for group_id in range(self.num_param_groups):
param_group = self._working_param_groups[group_id]
for param in param_group:
@@ -713,7 +713,7 @@ class LowLevelZeroOptimizer(OptimizerWrapper):
# if not overlapping communication (no reduction hook is attached) when zero1
# we need to manually reduce these gradients
if not partition_grad and not self._overlap_communication:
self.sync_grad()
self._sync_grad()
else:
self._run_reduction()