mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-08 11:27:24 +00:00
commit
1ace29b54d
@ -6,7 +6,7 @@ import torch.distributed as dist
|
|||||||
from torch.distributed import ProcessGroup
|
from torch.distributed import ProcessGroup
|
||||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||||
from torch.nn import functional as F
|
from torch.nn import functional as F
|
||||||
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
|
from transformers.cache_utils import Cache, DynamicCache
|
||||||
from transformers.modeling_outputs import (
|
from transformers.modeling_outputs import (
|
||||||
BaseModelOutputWithPastAndCrossAttentions,
|
BaseModelOutputWithPastAndCrossAttentions,
|
||||||
CausalLMOutputWithCrossAttentions,
|
CausalLMOutputWithCrossAttentions,
|
||||||
@ -21,6 +21,7 @@ from transformers.models.bloom.modeling_bloom import (
|
|||||||
BloomForSequenceClassification,
|
BloomForSequenceClassification,
|
||||||
BloomForTokenClassification,
|
BloomForTokenClassification,
|
||||||
BloomModel,
|
BloomModel,
|
||||||
|
dropout_add,
|
||||||
)
|
)
|
||||||
from transformers.utils import logging
|
from transformers.utils import logging
|
||||||
|
|
||||||
@ -108,7 +109,7 @@ class BloomPipelineForwards:
|
|||||||
def bloom_model_forward(
|
def bloom_model_forward(
|
||||||
self: BloomModel,
|
self: BloomModel,
|
||||||
input_ids: Optional[torch.LongTensor] = None,
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
head_mask: Optional[torch.LongTensor] = None,
|
head_mask: Optional[torch.LongTensor] = None,
|
||||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||||
@ -116,6 +117,7 @@ class BloomPipelineForwards:
|
|||||||
output_attentions: Optional[bool] = None,
|
output_attentions: Optional[bool] = None,
|
||||||
output_hidden_states: Optional[bool] = None,
|
output_hidden_states: Optional[bool] = None,
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
stage_manager: Optional[PipelineStageManager] = None,
|
stage_manager: Optional[PipelineStageManager] = None,
|
||||||
hidden_states: Optional[torch.FloatTensor] = None,
|
hidden_states: Optional[torch.FloatTensor] = None,
|
||||||
stage_index: Optional[List[int]] = None,
|
stage_index: Optional[List[int]] = None,
|
||||||
@ -151,6 +153,8 @@ class BloomPipelineForwards:
|
|||||||
if use_cache:
|
if use_cache:
|
||||||
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
||||||
use_cache = False
|
use_cache = False
|
||||||
|
past_key_values = None
|
||||||
|
|
||||||
# Prepare head mask if needed
|
# Prepare head mask if needed
|
||||||
# 1.0 in head_mask indicate we keep the head
|
# 1.0 in head_mask indicate we keep the head
|
||||||
# attention_probs has shape batch_size x num_heads x N x N
|
# attention_probs has shape batch_size x num_heads x N x N
|
||||||
@ -161,46 +165,60 @@ class BloomPipelineForwards:
|
|||||||
# case: First stage of training
|
# case: First stage of training
|
||||||
if stage_manager.is_first_stage():
|
if stage_manager.is_first_stage():
|
||||||
# check input_ids and inputs_embeds
|
# check input_ids and inputs_embeds
|
||||||
if input_ids is not None and inputs_embeds is not None:
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||||||
elif input_ids is not None:
|
if self.gradient_checkpointing and self.training and use_cache:
|
||||||
batch_size, seq_length = input_ids.shape
|
|
||||||
elif inputs_embeds is not None:
|
|
||||||
batch_size, seq_length, _ = inputs_embeds.shape
|
|
||||||
else:
|
|
||||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
||||||
|
|
||||||
if inputs_embeds is None:
|
|
||||||
inputs_embeds = self.word_embeddings(input_ids)
|
|
||||||
|
|
||||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
|
||||||
# initialize in the first stage and then pass to the next stage
|
|
||||||
else:
|
|
||||||
input_shape = hidden_states.shape[:-1]
|
|
||||||
batch_size, seq_length = input_shape
|
|
||||||
|
|
||||||
# extra recording tensor should be generated in the first stage
|
|
||||||
|
|
||||||
presents = () if use_cache else None
|
|
||||||
all_self_attentions = () if output_attentions else None
|
|
||||||
all_hidden_states = () if output_hidden_states else None
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
if use_cache:
|
|
||||||
logger.warning_once(
|
logger.warning_once(
|
||||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||||
)
|
)
|
||||||
use_cache = False
|
use_cache = False
|
||||||
|
|
||||||
if past_key_values is None:
|
if inputs_embeds is None:
|
||||||
past_key_values = tuple([None] * len(self.h))
|
inputs_embeds = self.word_embeddings(input_ids)
|
||||||
# Compute alibi tensor: check build_alibi_tensor documentation,build for every stage
|
|
||||||
seq_length_with_past = seq_length
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||||
past_key_values_length = 0
|
|
||||||
if past_key_values[0] is not None:
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||||||
past_key_values_length = past_key_values[0][0].shape[2] # source_len
|
past_length = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||||
|
if cache_position is None:
|
||||||
|
cache_position = torch.arange(past_length, past_length + seq_length, device=inputs_embeds.device)
|
||||||
|
# initialize in the first stage and then pass to the next stage
|
||||||
|
else:
|
||||||
|
input_shape = hidden_states.shape[:-1]
|
||||||
|
batch_size, seq_length = input_shape
|
||||||
|
past_length = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||||
|
if cache_position is None:
|
||||||
|
cache_position = torch.arange(past_length, past_length + seq_length, device=hidden_states.device)
|
||||||
|
|
||||||
|
# extra recording tensor should be generated in the first stage
|
||||||
|
|
||||||
|
all_self_attentions = () if output_attentions else None
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||||||
|
logger.warning_once(
|
||||||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||||
|
)
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
# kept for BC (non `Cache` `past_key_values` inputs)
|
||||||
|
return_legacy_cache = False
|
||||||
|
if use_cache and not isinstance(past_key_values, Cache):
|
||||||
|
return_legacy_cache = True
|
||||||
|
if past_key_values is None:
|
||||||
|
past_key_values = DynamicCache()
|
||||||
|
else:
|
||||||
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||||
|
logger.warning_once(
|
||||||
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
||||||
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
||||||
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Compute alibi tensor: check build_alibi_tensor documentation,build for every stage
|
||||||
|
past_length = 0
|
||||||
|
seq_length_with_past = seq_length + past_length
|
||||||
|
|
||||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
||||||
if attention_mask is None:
|
if attention_mask is None:
|
||||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||||
else:
|
else:
|
||||||
@ -209,13 +227,10 @@ class BloomPipelineForwards:
|
|||||||
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||||||
|
|
||||||
# causal_mask is constructed every stage and its input is passed through different stages
|
# causal_mask is constructed every stage and its input is passed through different stages
|
||||||
causal_mask = _prepare_4d_causal_attention_mask(
|
causal_mask = self._update_causal_mask(
|
||||||
attention_mask,
|
attention_mask, hidden_states, cache_position, past_key_values, output_attentions
|
||||||
input_shape=(batch_size, seq_length),
|
|
||||||
inputs_embeds=hidden_states,
|
|
||||||
past_key_values_length=past_key_values_length,
|
|
||||||
)
|
)
|
||||||
causal_mask = causal_mask.bool()
|
|
||||||
# split the input tensor along sequence dimension
|
# split the input tensor along sequence dimension
|
||||||
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
||||||
if shard_config and shard_config.enable_sequence_parallelism:
|
if shard_config and shard_config.enable_sequence_parallelism:
|
||||||
@ -228,9 +243,7 @@ class BloomPipelineForwards:
|
|||||||
)
|
)
|
||||||
|
|
||||||
start_idx, end_idx = stage_index[0], stage_index[1]
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
||||||
for i, (block, layer_past) in enumerate(
|
for i, block in enumerate(self.h[start_idx:end_idx], start=start_idx):
|
||||||
zip(self.h[start_idx:end_idx], past_key_values[start_idx:end_idx]), start=start_idx
|
|
||||||
):
|
|
||||||
if output_hidden_states:
|
if output_hidden_states:
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
@ -240,26 +253,28 @@ class BloomPipelineForwards:
|
|||||||
hidden_states,
|
hidden_states,
|
||||||
alibi,
|
alibi,
|
||||||
causal_mask,
|
causal_mask,
|
||||||
layer_past,
|
past_key_values,
|
||||||
head_mask[i],
|
head_mask[i],
|
||||||
use_cache,
|
use_cache,
|
||||||
output_attentions,
|
output_attentions,
|
||||||
|
cache_position,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
outputs = block(
|
outputs = block(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
layer_past=layer_past,
|
layer_past=past_key_values,
|
||||||
attention_mask=causal_mask,
|
attention_mask=causal_mask,
|
||||||
head_mask=head_mask[i],
|
head_mask=head_mask[i],
|
||||||
use_cache=use_cache,
|
use_cache=use_cache,
|
||||||
output_attentions=output_attentions,
|
output_attentions=output_attentions,
|
||||||
alibi=alibi,
|
alibi=alibi,
|
||||||
|
cache_position=cache_position,
|
||||||
)
|
)
|
||||||
|
|
||||||
hidden_states = outputs[0]
|
hidden_states = outputs[0]
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = outputs[1]
|
||||||
|
|
||||||
if use_cache is True:
|
|
||||||
presents = presents + (outputs[1],)
|
|
||||||
if output_attentions:
|
if output_attentions:
|
||||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||||
|
|
||||||
@ -277,20 +292,23 @@ class BloomPipelineForwards:
|
|||||||
# Add last hidden state
|
# Add last hidden state
|
||||||
hidden_states = self.ln_f(hidden_states)
|
hidden_states = self.ln_f(hidden_states)
|
||||||
|
|
||||||
# TODO(jianghai): deal with all_hidden_states, all_self_attentions, presents
|
|
||||||
if output_hidden_states:
|
if output_hidden_states:
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
|
if return_legacy_cache:
|
||||||
|
next_cache = next_cache.to_legacy_cache()
|
||||||
|
|
||||||
if stage_manager.is_last_stage():
|
if stage_manager.is_last_stage():
|
||||||
if not return_dict:
|
if not return_dict:
|
||||||
return tuple(
|
return tuple(
|
||||||
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None
|
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
|
||||||
)
|
)
|
||||||
|
|
||||||
# attention_mask is not returned ; presents = past_key_values
|
# attention_mask is not returned ; presents = past_key_values
|
||||||
return BaseModelOutputWithPastAndCrossAttentions(
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||||||
last_hidden_state=hidden_states,
|
last_hidden_state=hidden_states,
|
||||||
past_key_values=presents,
|
past_key_values=next_cache,
|
||||||
hidden_states=all_hidden_states,
|
hidden_states=all_hidden_states,
|
||||||
attentions=all_self_attentions,
|
attentions=all_self_attentions,
|
||||||
)
|
)
|
||||||
@ -718,35 +736,24 @@ def get_jit_fused_bloom_attention_forward():
|
|||||||
head_mask: Optional[torch.Tensor] = None,
|
head_mask: Optional[torch.Tensor] = None,
|
||||||
use_cache: bool = False,
|
use_cache: bool = False,
|
||||||
output_attentions: bool = False,
|
output_attentions: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
):
|
):
|
||||||
|
batch_size, q_length, _ = hidden_states.shape
|
||||||
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||||
|
# 3 x [batch_size, num_heads, seq_length, head_dim]
|
||||||
|
query_layer, key_layer, value_layer = self._reshape(fused_qkv)
|
||||||
|
|
||||||
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
|
||||||
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
|
||||||
|
|
||||||
batch_size, q_length, _, _ = query_layer.shape
|
|
||||||
|
|
||||||
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
|
||||||
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
|
|
||||||
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
|
||||||
if layer_past is not None:
|
if layer_past is not None:
|
||||||
past_key, past_value = layer_past
|
cache_kwargs = {"cache_position": cache_position}
|
||||||
# concatenate along seq_length dimension:
|
key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
|
||||||
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
|
||||||
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
|
||||||
key_layer = torch.cat((past_key, key_layer), dim=2)
|
|
||||||
value_layer = torch.cat((past_value, value_layer), dim=1)
|
|
||||||
|
|
||||||
_, _, kv_length = key_layer.shape
|
# reshape qkv for further computations
|
||||||
|
query_layer = query_layer.reshape(batch_size * self.num_heads, -1, self.head_dim)
|
||||||
if use_cache is True:
|
key_layer = key_layer.reshape(batch_size * self.num_heads, -1, self.head_dim).transpose(-1, -2)
|
||||||
present = (key_layer, value_layer)
|
value_layer = value_layer.reshape(batch_size * self.num_heads, -1, self.head_dim)
|
||||||
else:
|
|
||||||
present = None
|
|
||||||
|
|
||||||
# [batch_size * num_heads, q_length, kv_length]
|
# [batch_size * num_heads, q_length, kv_length]
|
||||||
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
|
attention_scores = alibi.baddbmm(
|
||||||
matmul_result = alibi.baddbmm(
|
|
||||||
batch1=query_layer,
|
batch1=query_layer,
|
||||||
batch2=key_layer,
|
batch2=key_layer,
|
||||||
beta=self.beta,
|
beta=self.beta,
|
||||||
@ -754,15 +761,13 @@ def get_jit_fused_bloom_attention_forward():
|
|||||||
)
|
)
|
||||||
|
|
||||||
# change view to [batch_size, num_heads, q_length, kv_length]
|
# change view to [batch_size, num_heads, q_length, kv_length]
|
||||||
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
attn_weights = attention_scores.view(batch_size, self.num_heads, q_length, -1)
|
||||||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
|
causal_mask = attention_mask[:, :, :, : key_layer.shape[-1]]
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
|
||||||
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype
|
||||||
input_dtype = attention_scores.dtype
|
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
||||||
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
|
||||||
if input_dtype == torch.float16:
|
|
||||||
attention_scores = attention_scores.to(torch.float)
|
|
||||||
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
|
||||||
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
|
|
||||||
|
|
||||||
# [batch_size, num_heads, q_length, kv_length]
|
# [batch_size, num_heads, q_length, kv_length]
|
||||||
attention_probs = self.attention_dropout(attention_probs)
|
attention_probs = self.attention_dropout(attention_probs)
|
||||||
@ -771,12 +776,12 @@ def get_jit_fused_bloom_attention_forward():
|
|||||||
attention_probs = attention_probs * head_mask
|
attention_probs = attention_probs * head_mask
|
||||||
|
|
||||||
# change view [batch_size x num_heads, q_length, kv_length]
|
# change view [batch_size x num_heads, q_length, kv_length]
|
||||||
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, -1)
|
||||||
|
|
||||||
# matmul: [batch_size * num_heads, q_length, head_dim]
|
# matmul: [batch_size * num_heads, q_length, head_dim]
|
||||||
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
||||||
|
|
||||||
# change view [batch_size, num_heads, q_length, head_dim]
|
# change view [batch_size, q_length, num_heads * head_dim]
|
||||||
context_layer = self._merge_heads(context_layer)
|
context_layer = self._merge_heads(context_layer)
|
||||||
|
|
||||||
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
||||||
@ -791,9 +796,9 @@ def get_jit_fused_bloom_attention_forward():
|
|||||||
else:
|
else:
|
||||||
output_tensor = self.dense(context_layer)
|
output_tensor = self.dense(context_layer)
|
||||||
|
|
||||||
output_tensor = self.dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
||||||
|
|
||||||
outputs = (output_tensor, present)
|
outputs = (output_tensor, layer_past)
|
||||||
if output_attentions:
|
if output_attentions:
|
||||||
outputs += (attention_probs,)
|
outputs += (attention_probs,)
|
||||||
|
|
||||||
@ -839,13 +844,99 @@ def get_jit_fused_bloom_gelu_forward():
|
|||||||
return forward
|
return forward
|
||||||
|
|
||||||
|
|
||||||
|
# Fixed the q_length args when doing the sequence parallelism in bloom model.
|
||||||
|
def get_bloom_sequence_parallel_attention_forward(shard_config: ShardConfig):
|
||||||
|
from transformers.models.bloom.modeling_bloom import BloomAttention
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self: BloomAttention,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
residual: torch.Tensor,
|
||||||
|
alibi: torch.Tensor,
|
||||||
|
attention_mask: torch.Tensor,
|
||||||
|
layer_past: Optional[Cache] = None,
|
||||||
|
head_mask: Optional[torch.Tensor] = None,
|
||||||
|
use_cache: bool = False,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
):
|
||||||
|
batch_size, q_length, _ = hidden_states.shape
|
||||||
|
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
||||||
|
# 3 x [batch_size, num_heads, seq_length, head_dim]
|
||||||
|
query_layer, key_layer, value_layer = self._reshape(fused_qkv)
|
||||||
|
|
||||||
|
if layer_past is not None:
|
||||||
|
cache_kwargs = {"cache_position": cache_position}
|
||||||
|
key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
|
||||||
|
|
||||||
|
# reshape qkv for further computations
|
||||||
|
query_layer = query_layer.reshape(batch_size * self.num_heads, -1, self.head_dim)
|
||||||
|
key_layer = key_layer.reshape(batch_size * self.num_heads, -1, self.head_dim).transpose(-1, -2)
|
||||||
|
value_layer = value_layer.reshape(batch_size * self.num_heads, -1, self.head_dim)
|
||||||
|
|
||||||
|
# [batch_size * num_heads, q_length, kv_length]
|
||||||
|
attention_scores = alibi.baddbmm(
|
||||||
|
batch1=query_layer,
|
||||||
|
batch2=key_layer,
|
||||||
|
beta=self.beta,
|
||||||
|
alpha=self.inv_norm_factor,
|
||||||
|
)
|
||||||
|
if shard_config.enable_sequence_parallelism:
|
||||||
|
_, q_length, _ = query_layer.shape
|
||||||
|
# change view to [batch_size, num_heads, q_length, kv_length]
|
||||||
|
attn_weights = attention_scores.view(batch_size, self.num_heads, q_length, -1)
|
||||||
|
if attention_mask is not None: # no matter the length, we just slice it
|
||||||
|
causal_mask = attention_mask[:, :, :, : key_layer.shape[-1]]
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
|
||||||
|
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype
|
||||||
|
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_layer.dtype)
|
||||||
|
|
||||||
|
# [batch_size, num_heads, q_length, kv_length]
|
||||||
|
attention_probs = self.attention_dropout(attention_probs)
|
||||||
|
|
||||||
|
if head_mask is not None:
|
||||||
|
attention_probs = attention_probs * head_mask
|
||||||
|
|
||||||
|
# change view [batch_size x num_heads, q_length, kv_length]
|
||||||
|
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, -1)
|
||||||
|
|
||||||
|
# matmul: [batch_size * num_heads, q_length, head_dim]
|
||||||
|
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
|
||||||
|
|
||||||
|
# change view [batch_size, q_length, num_heads * head_dim]
|
||||||
|
context_layer = self._merge_heads(context_layer)
|
||||||
|
|
||||||
|
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
|
||||||
|
if self.pretraining_tp > 1 and self.slow_but_exact:
|
||||||
|
slices = self.hidden_size / self.pretraining_tp
|
||||||
|
output_tensor = torch.zeros_like(context_layer)
|
||||||
|
for i in range(self.pretraining_tp):
|
||||||
|
output_tensor = output_tensor + F.linear(
|
||||||
|
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
|
||||||
|
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
output_tensor = self.dense(context_layer)
|
||||||
|
|
||||||
|
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
|
||||||
|
|
||||||
|
outputs = (output_tensor, layer_past)
|
||||||
|
if output_attentions:
|
||||||
|
outputs += (attention_probs,)
|
||||||
|
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
return forward
|
||||||
|
|
||||||
|
|
||||||
def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
||||||
from transformers import BloomModel
|
from transformers import BloomModel
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self: BloomModel,
|
self: BloomModel,
|
||||||
input_ids: Optional[torch.LongTensor] = None,
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
head_mask: Optional[torch.LongTensor] = None,
|
head_mask: Optional[torch.LongTensor] = None,
|
||||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||||
@ -853,6 +944,7 @@ def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|||||||
output_attentions: Optional[bool] = None,
|
output_attentions: Optional[bool] = None,
|
||||||
output_hidden_states: Optional[bool] = None,
|
output_hidden_states: Optional[bool] = None,
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
**deprecated_arguments,
|
**deprecated_arguments,
|
||||||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||||
if deprecated_arguments.pop("position_ids", False) is not False:
|
if deprecated_arguments.pop("position_ids", False) is not False:
|
||||||
@ -864,7 +956,6 @@ def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|||||||
)
|
)
|
||||||
if len(deprecated_arguments) > 0:
|
if len(deprecated_arguments) > 0:
|
||||||
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
||||||
|
|
||||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||||
output_hidden_states = (
|
output_hidden_states = (
|
||||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
@ -872,62 +963,60 @@ def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
if input_ids is not None and inputs_embeds is not None:
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
||||||
elif input_ids is not None:
|
|
||||||
batch_size, seq_length = input_ids.shape
|
|
||||||
elif inputs_embeds is not None:
|
|
||||||
batch_size, seq_length, _ = inputs_embeds.shape
|
|
||||||
else:
|
|
||||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
||||||
|
|
||||||
if past_key_values is None:
|
if self.gradient_checkpointing and self.training and use_cache:
|
||||||
past_key_values = tuple([None] * len(self.h))
|
logger.warning_once(
|
||||||
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||||
|
)
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.word_embeddings(input_ids)
|
||||||
|
|
||||||
|
# kept for BC (non `Cache` `past_key_values` inputs)
|
||||||
|
return_legacy_cache = False
|
||||||
|
if use_cache and not isinstance(past_key_values, Cache):
|
||||||
|
return_legacy_cache = True
|
||||||
|
if past_key_values is None:
|
||||||
|
past_key_values = DynamicCache()
|
||||||
|
else:
|
||||||
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||||
|
logger.warning_once(
|
||||||
|
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
||||||
|
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
||||||
|
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_size, seq_length, _ = inputs_embeds.shape
|
||||||
|
past_length = past_key_values.get_seq_length() if past_key_values is not None else 0
|
||||||
|
seq_length_with_past = seq_length + past_length
|
||||||
|
if cache_position is None:
|
||||||
|
cache_position = torch.arange(past_length, past_length + seq_length, device=inputs_embeds.device)
|
||||||
|
|
||||||
# Prepare head mask if needed
|
# Prepare head mask if needed
|
||||||
# 1.0 in head_mask indicate we keep the head
|
# 1.0 in head_mask indicate we keep the head
|
||||||
# attention_probs has shape batch_size x num_heads x N x N
|
# attention_probs has shape batch_size x num_heads x N x N
|
||||||
# head_mask has shape n_layer x batch x num_heads x N x N
|
# head_mask has shape n_layer x batch x num_heads x N x N
|
||||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||||
|
|
||||||
if inputs_embeds is None:
|
|
||||||
inputs_embeds = self.word_embeddings(input_ids)
|
|
||||||
|
|
||||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||||
|
|
||||||
presents = () if use_cache else None
|
next_decoder_cache = None
|
||||||
all_self_attentions = () if output_attentions else None
|
all_self_attentions = () if output_attentions else None
|
||||||
all_hidden_states = () if output_hidden_states else None
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
if use_cache:
|
|
||||||
logger.warning_once(
|
|
||||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
||||||
)
|
|
||||||
use_cache = False
|
|
||||||
|
|
||||||
# Compute alibi tensor: check build_alibi_tensor documentation
|
# Compute alibi tensor: check build_alibi_tensor documentation
|
||||||
seq_length_with_past = seq_length
|
|
||||||
past_key_values_length = 0
|
|
||||||
if past_key_values[0] is not None:
|
|
||||||
past_key_values_length = past_key_values[0][0].shape[2]
|
|
||||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
||||||
if attention_mask is None:
|
if attention_mask is None:
|
||||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||||
else:
|
else:
|
||||||
attention_mask = attention_mask.to(hidden_states.device)
|
attention_mask = attention_mask.to(hidden_states.device)
|
||||||
|
|
||||||
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
||||||
|
causal_mask = self._update_causal_mask(
|
||||||
causal_mask = _prepare_4d_causal_attention_mask(
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||||
attention_mask,
|
|
||||||
input_shape=(batch_size, seq_length),
|
|
||||||
inputs_embeds=hidden_states,
|
|
||||||
past_key_values_length=past_key_values_length,
|
|
||||||
)
|
)
|
||||||
causal_mask = causal_mask.bool()
|
|
||||||
# split the input tensor along sequence dimension
|
|
||||||
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
|
|
||||||
hidden_states = split_forward_gather_backward(
|
hidden_states = split_forward_gather_backward(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
dim=1,
|
dim=1,
|
||||||
@ -935,7 +1024,7 @@ def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|||||||
fp8_communication=shard_config.fp8_communication,
|
fp8_communication=shard_config.fp8_communication,
|
||||||
)
|
)
|
||||||
|
|
||||||
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
for i, block in enumerate(self.h):
|
||||||
if output_hidden_states:
|
if output_hidden_states:
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
@ -945,25 +1034,27 @@ def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|||||||
hidden_states,
|
hidden_states,
|
||||||
alibi,
|
alibi,
|
||||||
causal_mask,
|
causal_mask,
|
||||||
layer_past,
|
past_key_values,
|
||||||
head_mask[i],
|
head_mask[i],
|
||||||
use_cache,
|
use_cache,
|
||||||
output_attentions,
|
output_attentions,
|
||||||
|
cache_position,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
outputs = block(
|
outputs = block(
|
||||||
hidden_states,
|
hidden_states,
|
||||||
layer_past=layer_past,
|
layer_past=past_key_values,
|
||||||
attention_mask=causal_mask,
|
attention_mask=causal_mask,
|
||||||
head_mask=head_mask[i],
|
head_mask=head_mask[i],
|
||||||
use_cache=use_cache,
|
use_cache=use_cache,
|
||||||
output_attentions=output_attentions,
|
output_attentions=output_attentions,
|
||||||
alibi=alibi,
|
alibi=alibi,
|
||||||
|
cache_position=cache_position,
|
||||||
)
|
)
|
||||||
|
|
||||||
hidden_states = outputs[0]
|
hidden_states = outputs[0]
|
||||||
if use_cache is True:
|
if use_cache:
|
||||||
presents = presents + (outputs[1],)
|
next_decoder_cache = outputs[1]
|
||||||
|
|
||||||
if output_attentions:
|
if output_attentions:
|
||||||
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
||||||
@ -975,18 +1066,25 @@ def get_bloom_sequence_parallel_forward_fn(shard_config: ShardConfig):
|
|||||||
process_group=shard_config.tensor_parallel_process_group,
|
process_group=shard_config.tensor_parallel_process_group,
|
||||||
fp8_communication=shard_config.fp8_communication,
|
fp8_communication=shard_config.fp8_communication,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Add last hidden state
|
# Add last hidden state
|
||||||
hidden_states = self.ln_f(hidden_states)
|
hidden_states = self.ln_f(hidden_states)
|
||||||
|
|
||||||
if output_hidden_states:
|
if output_hidden_states:
|
||||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||||
|
|
||||||
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
|
if return_legacy_cache:
|
||||||
|
next_cache = next_cache.to_legacy_cache()
|
||||||
|
|
||||||
if not return_dict:
|
if not return_dict:
|
||||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
return tuple(
|
||||||
|
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
|
||||||
|
)
|
||||||
|
|
||||||
return BaseModelOutputWithPastAndCrossAttentions(
|
return BaseModelOutputWithPastAndCrossAttentions(
|
||||||
last_hidden_state=hidden_states,
|
last_hidden_state=hidden_states,
|
||||||
past_key_values=presents,
|
past_key_values=next_cache,
|
||||||
hidden_states=all_hidden_states,
|
hidden_states=all_hidden_states,
|
||||||
attentions=all_self_attentions,
|
attentions=all_self_attentions,
|
||||||
)
|
)
|
||||||
|
@ -11,6 +11,7 @@ import colossalai.shardformer.layer as col_nn
|
|||||||
from ..modeling.bloom import (
|
from ..modeling.bloom import (
|
||||||
BloomPipelineForwards,
|
BloomPipelineForwards,
|
||||||
build_bloom_alibi_tensor_fn,
|
build_bloom_alibi_tensor_fn,
|
||||||
|
get_bloom_sequence_parallel_attention_forward,
|
||||||
get_bloom_sequence_parallel_forward_fn,
|
get_bloom_sequence_parallel_forward_fn,
|
||||||
get_jit_fused_bloom_attention_forward,
|
get_jit_fused_bloom_attention_forward,
|
||||||
get_jit_fused_bloom_gelu_forward,
|
get_jit_fused_bloom_gelu_forward,
|
||||||
@ -61,6 +62,15 @@ class BloomPolicy(Policy):
|
|||||||
|
|
||||||
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
use_zbv = self.pipeline_stage_manager is not None and self.pipeline_stage_manager.use_zbv
|
||||||
|
|
||||||
|
if self.shard_config.enable_sequence_parallelism:
|
||||||
|
self.append_or_create_method_replacement(
|
||||||
|
description={
|
||||||
|
"forward": get_bloom_sequence_parallel_attention_forward(self.shard_config),
|
||||||
|
},
|
||||||
|
policy=policy,
|
||||||
|
target_key=BloomAttention,
|
||||||
|
)
|
||||||
|
|
||||||
if self.shard_config.enable_tensor_parallelism:
|
if self.shard_config.enable_tensor_parallelism:
|
||||||
assert (
|
assert (
|
||||||
self.model.config.n_head % self.shard_config.tensor_parallel_size == 0
|
self.model.config.n_head % self.shard_config.tensor_parallel_size == 0
|
||||||
|
Loading…
Reference in New Issue
Block a user