mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-08-04 01:29:55 +00:00
[hotfix] fix unit test test_module_spec (#1321)
This commit is contained in:
parent
9e4c6449b0
commit
1b41686461
@ -88,7 +88,7 @@ def init_colo_module(module: torch.nn.Module,
|
|||||||
compute_pattern = compute_spec.compute_pattern
|
compute_pattern = compute_spec.compute_pattern
|
||||||
if is_colo_module(module):
|
if is_colo_module(module):
|
||||||
# for each param
|
# for each param
|
||||||
# set DistSpec and ComputeSpec
|
# set its process_group, dist_spec and compute_spec
|
||||||
colo_module = get_colo_module(module)
|
colo_module = get_colo_module(module)
|
||||||
colo_module.register(compute_pattern, pg)
|
colo_module.register(compute_pattern, pg)
|
||||||
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
|
if not colo_module.has_compute_pattern_with_mode(compute_pattern, mode=mode):
|
||||||
@ -101,6 +101,7 @@ def init_colo_module(module: torch.nn.Module,
|
|||||||
continue
|
continue
|
||||||
param = module.get_parameter(param_name)
|
param = module.get_parameter(param_name)
|
||||||
if isinstance(param, ColoParameter):
|
if isinstance(param, ColoParameter):
|
||||||
|
param.set_process_group(pg)
|
||||||
param.set_dist_spec(dist_spec)
|
param.set_dist_spec(dist_spec)
|
||||||
param.compute_spec = compute_spec
|
param.compute_spec = compute_spec
|
||||||
for mod in param.shared_param_modules:
|
for mod in param.shared_param_modules:
|
||||||
|
@ -121,11 +121,13 @@ class ColoTensor(torch.Tensor):
|
|||||||
RuntimeError:
|
RuntimeError:
|
||||||
"""
|
"""
|
||||||
assert isinstance(pg, ProcessGroup), f"pg as type {type(pg)} is invalid"
|
assert isinstance(pg, ProcessGroup), f"pg as type {type(pg)} is invalid"
|
||||||
if self.process_group.tp_world_size() != 1:
|
# if the new pg is the same as the old pg, just returns
|
||||||
raise RuntimeError("can not set_process_group on a ColoTensor whose process_group has tp world group")
|
if self.process_group == pg:
|
||||||
|
return
|
||||||
if self.dist_spec.placement.value != 'r':
|
assert self.process_group.tp_world_size() == 1, \
|
||||||
raise RuntimeError("can not set_process_group on a ColoTensor whose dist spec is not REPLICATE")
|
"Can not set_process_group on a ColoTensor whose process_group has tp world group"
|
||||||
|
assert self.dist_spec.placement.value == 'r', \
|
||||||
|
"Can not set_process_group on a ColoTensor whose dist spec is not REPLICATE"
|
||||||
|
|
||||||
self.process_group = pg
|
self.process_group = pg
|
||||||
|
|
||||||
|
@ -1,11 +1,11 @@
|
|||||||
from copy import copy
|
from copy import deepcopy
|
||||||
import pytest
|
import pytest
|
||||||
from functools import partial
|
from functools import partial
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.multiprocessing as mp
|
import torch.multiprocessing as mp
|
||||||
|
|
||||||
from colossalai.tensor import ColoTensorSpec, ComputePattern, ComputeSpec, ShardSpec, ReplicaSpec
|
from colossalai.tensor import ColoTensor, ComputePattern, ComputeSpec, ShardSpec, ColoTensorSpec
|
||||||
from colossalai.nn.parallel.layers import init_colo_module, check_colo_module
|
from colossalai.nn.parallel.layers import init_colo_module, check_colo_module
|
||||||
from _utils import tensor_equal, tensor_shard_equal, set_seed
|
from _utils import tensor_equal, tensor_shard_equal, set_seed
|
||||||
|
|
||||||
@ -112,21 +112,25 @@ def run_linear_with_spec(mode):
|
|||||||
with ColoInitContext(device=get_current_device()):
|
with ColoInitContext(device=get_current_device()):
|
||||||
model = torch.nn.Linear(4, 8)
|
model = torch.nn.Linear(4, 8)
|
||||||
|
|
||||||
model_handy = copy(model)
|
model_handy = deepcopy(model)
|
||||||
world_size = torch.distributed.get_world_size()
|
world_size = torch.distributed.get_world_size()
|
||||||
pg = ProcessGroup(tp_degree=world_size)
|
pg = ProcessGroup(tp_degree=world_size)
|
||||||
compute_spec = ComputeSpec(ComputePattern.TP1D)
|
compute_spec = ComputeSpec(ComputePattern.TP1D)
|
||||||
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode)
|
init_colo_module(model, compute_spec, pg=pg, recursive=True, mode=mode)
|
||||||
|
|
||||||
x = torch.rand(2, 4).cuda()
|
x = torch.rand(2, 4).cuda()
|
||||||
|
colo_x = ColoTensor.from_torch_tensor(x, ColoTensorSpec(pg))
|
||||||
|
|
||||||
out = model(x)
|
out = model(x)
|
||||||
colo_out = model_handy(x)
|
colo_out = model_handy(colo_x)
|
||||||
assert tensor_equal(out, colo_out)
|
assert tensor_equal(out, colo_out)
|
||||||
|
|
||||||
grad = torch.rand_like(out)
|
grad = torch.rand_like(out)
|
||||||
out.backward(grad)
|
out.backward(grad)
|
||||||
colo_out.backward(grad)
|
colo_out.backward(grad)
|
||||||
assert tensor_shard_equal(model.weight.grad, model_handy.weight.grad, pg.tp_local_rank(), pg.tp_world_size())
|
|
||||||
assert tensor_shard_equal(model.bias.grad, model_handy.bias.grad, pg.tp_local_rank(), pg.tp_world_size())
|
assert tensor_shard_equal(model_handy.weight.grad, model.weight.grad, pg.tp_local_rank(), pg.tp_world_size())
|
||||||
|
assert tensor_shard_equal(model_handy.bias.grad, model.bias.grad, pg.tp_local_rank(), pg.tp_world_size())
|
||||||
|
|
||||||
|
|
||||||
def run_check_shared_param():
|
def run_check_shared_param():
|
||||||
@ -196,7 +200,7 @@ def run_dist_check(rank, world_size, port):
|
|||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 4])
|
@pytest.mark.parametrize('world_size', [1, 4])
|
||||||
@pytest.mark.skip("under development lazy init ColoParameter in Context")
|
@pytest.mark.skip("for higher testing speed")
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_module_linear_1d(world_size):
|
def test_module_linear_1d(world_size):
|
||||||
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
@ -205,7 +209,7 @@ def test_module_linear_1d(world_size):
|
|||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 4])
|
@pytest.mark.parametrize('world_size', [1, 4])
|
||||||
@pytest.mark.skip("under development lazy init ColoParameter in Context")
|
@pytest.mark.skip("for higher testing speed")
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_module_model(world_size):
|
def test_module_model(world_size):
|
||||||
run_func = partial(run_dist_model, world_size=world_size, port=free_port())
|
run_func = partial(run_dist_model, world_size=world_size, port=free_port())
|
||||||
@ -214,7 +218,7 @@ def test_module_model(world_size):
|
|||||||
|
|
||||||
@pytest.mark.dist
|
@pytest.mark.dist
|
||||||
@pytest.mark.parametrize('world_size', [1, 2])
|
@pytest.mark.parametrize('world_size', [1, 2])
|
||||||
@pytest.mark.skip("under development lazy init ColoParameter in Context")
|
@pytest.mark.skip("for higher testing speed")
|
||||||
@rerun_if_address_is_in_use()
|
@rerun_if_address_is_in_use()
|
||||||
def test_module_check(world_size):
|
def test_module_check(world_size):
|
||||||
run_func = partial(run_dist_check, world_size=world_size, port=free_port())
|
run_func = partial(run_dist_check, world_size=world_size, port=free_port())
|
||||||
@ -222,4 +226,4 @@ def test_module_check(world_size):
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
test_module_check(2)
|
test_module_linear_1d(4)
|
||||||
|
Loading…
Reference in New Issue
Block a user