mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-16 06:30:41 +00:00
[autoparallel] adapt solver with self attention (#2037)
* [autoparallel] adapt solver with self attention * polish code
This commit is contained in:
@@ -0,0 +1,230 @@
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
# from transformers.models.gpt2.modeling_gpt2 import GPT2Attention
|
||||
import torch.nn as nn
|
||||
import transformers
|
||||
from torch.fx import GraphModule
|
||||
from torchvision.models import resnet50
|
||||
from transformers.pytorch_utils import Conv1D
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
|
||||
from colossalai.auto_parallel.tensor_shard.solver import (
|
||||
CostGraph,
|
||||
GraphAnalyser,
|
||||
Solver,
|
||||
SolverOptions,
|
||||
StrategiesConstructor,
|
||||
)
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx.tracer.tracer import ColoTracer
|
||||
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
|
||||
BATCH_SIZE = 1
|
||||
SEQ_LENGTH = 32
|
||||
HIDDEN_DIM = 768
|
||||
|
||||
|
||||
# The reason Why we don't import GPT2Attention from transformers directly is that:
|
||||
# 1. The tracer will not work correctly when we feed meta_args and concrete_args at same time,
|
||||
# so we have to build the customized GPT2Attention class and remove the conditional branch manually.
|
||||
# 2. The order of split and view op has been changed in the customized GPT2Attention class, the new
|
||||
# order is same as megatron-lm gpt model.
|
||||
class GPT2Attention(nn.Module):
|
||||
|
||||
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
||||
super().__init__()
|
||||
|
||||
max_positions = config.max_position_embeddings
|
||||
self.register_buffer(
|
||||
"bias",
|
||||
torch.tril(torch.ones((max_positions, max_positions),
|
||||
dtype=torch.uint8)).view(1, 1, max_positions, max_positions),
|
||||
)
|
||||
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
||||
|
||||
self.embed_dim = config.hidden_size
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_dim = self.embed_dim // self.num_heads
|
||||
self.split_size = self.embed_dim
|
||||
if self.head_dim * self.num_heads != self.embed_dim:
|
||||
raise ValueError(
|
||||
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
||||
f" {self.num_heads}).")
|
||||
|
||||
self.scale_attn_weights = config.scale_attn_weights
|
||||
self.is_cross_attention = is_cross_attention
|
||||
|
||||
# Layer-wise attention scaling, reordering, and upcasting
|
||||
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
||||
self.layer_idx = layer_idx
|
||||
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
||||
|
||||
if self.is_cross_attention:
|
||||
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
||||
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
||||
else:
|
||||
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
||||
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
||||
|
||||
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
||||
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
||||
|
||||
self.pruned_heads = set()
|
||||
|
||||
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
||||
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
||||
|
||||
if self.scale_attn_weights:
|
||||
attn_weights = attn_weights / (value.size(-1)**0.5)
|
||||
|
||||
# Layer-wise attention scaling
|
||||
if self.scale_attn_by_inverse_layer_idx:
|
||||
attn_weights = attn_weights / float(self.layer_idx + 1)
|
||||
|
||||
if not self.is_cross_attention:
|
||||
# if only "normal" attention layer implements causal mask
|
||||
query_length, key_length = query.size(-2), key.size(-2)
|
||||
causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length].to(torch.bool)
|
||||
attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
|
||||
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask
|
||||
attn_weights = attn_weights + attention_mask
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||
|
||||
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
||||
attn_weights = attn_weights.type(value.dtype)
|
||||
attn_weights = self.attn_dropout(attn_weights)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attn_weights = attn_weights * head_mask
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
|
||||
return attn_output, attn_weights
|
||||
|
||||
def _split_heads(self, tensor, num_heads, attn_head_size):
|
||||
"""
|
||||
Splits hidden_size dim into attn_head_size and num_heads
|
||||
"""
|
||||
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
||||
tensor = tensor.view(new_shape)
|
||||
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
||||
|
||||
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
||||
"""
|
||||
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
||||
"""
|
||||
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
||||
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
||||
return tensor.view(new_shape)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
||||
if encoder_hidden_states is not None:
|
||||
if not hasattr(self, "q_attn"):
|
||||
raise ValueError(
|
||||
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
||||
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`.")
|
||||
|
||||
query = self.q_attn(hidden_states)
|
||||
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
||||
attention_mask = encoder_attention_mask
|
||||
else:
|
||||
# query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
||||
qkv = self.c_attn(hidden_states)
|
||||
|
||||
# query = self._split_heads(query, self.num_heads, self.head_dim)
|
||||
# key = self._split_heads(key, self.num_heads, self.head_dim)
|
||||
# value = self._split_heads(value, self.num_heads, self.head_dim)
|
||||
query, key, value = self._split_heads(qkv, self.num_heads, 3 * self.head_dim).split(self.head_dim, dim=3)
|
||||
|
||||
if layer_past is not None:
|
||||
past_key, past_value = layer_past
|
||||
key = torch.cat((past_key, key), dim=-2)
|
||||
value = torch.cat((past_value, value), dim=-2)
|
||||
|
||||
present = (key, value)
|
||||
|
||||
if self.reorder_and_upcast_attn:
|
||||
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
||||
else:
|
||||
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
||||
|
||||
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
||||
attn_output = self.c_proj(attn_output)
|
||||
attn_output = self.resid_dropout(attn_output)
|
||||
|
||||
outputs = (attn_output, present)
|
||||
outputs += (attn_weights,)
|
||||
|
||||
return outputs # a, present, (attentions)
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
def test_self_attention_block():
|
||||
config = transformers.GPT2Config(n_position=64, n_layer=4, n_head=16, n_embd=HIDDEN_DIM)
|
||||
model_cls = GPT2Attention
|
||||
model = model_cls(config=config)
|
||||
# output = model(torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM), attention_mask=torch.rand(1, SEQ_LENGTH))
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
# [[0, 1]
|
||||
# [2, 3]]
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||||
shape_consistency_manager = ShapeConsistencyManager()
|
||||
|
||||
tracer = ColoTracer()
|
||||
input_sample = {
|
||||
'hidden_states': torch.rand(BATCH_SIZE, SEQ_LENGTH, HIDDEN_DIM).to('meta'),
|
||||
'attention_mask': torch.rand(1, SEQ_LENGTH).to('meta'),
|
||||
}
|
||||
|
||||
graph = tracer.trace(root=model, meta_args=input_sample)
|
||||
|
||||
gm = GraphModule(model, graph, model.__class__.__name__)
|
||||
print(gm.graph)
|
||||
gm.recompile()
|
||||
graph_analyser = GraphAnalyser(gm)
|
||||
liveness_list = graph_analyser.liveness_analysis()
|
||||
solver_options = SolverOptions()
|
||||
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
|
||||
strategies_constructor.build_strategies_and_cost()
|
||||
|
||||
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
|
||||
cost_graph.simplify_graph()
|
||||
solver = Solver(gm.graph, strategies_constructor, cost_graph, graph_analyser, memory_budget=-1)
|
||||
ret = solver.call_solver_serialized_args()
|
||||
strategies_list = solver.last_s_val
|
||||
nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies]
|
||||
|
||||
computation_cost = 0
|
||||
communication_cost = 0
|
||||
memory_cost = 0
|
||||
for index, node in enumerate(nodes):
|
||||
print(node.name, node.strategies_vector[strategies_list[index]].name)
|
||||
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost.total
|
||||
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost.total
|
||||
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost.total
|
||||
if isinstance(node_memory_cost, tuple):
|
||||
node_memory_cost = node_memory_cost[0]
|
||||
memory_cost += node_memory_cost.activation + node_memory_cost.parameter
|
||||
|
||||
print(f'computation cost is {computation_cost}')
|
||||
print(f'communication cost is {communication_cost}')
|
||||
print(f'memory cost is {memory_cost}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_self_attention_block()
|
Reference in New Issue
Block a user