[shardformer] support tp+zero for shardformer (#4472)

* support tp+zero/input type cast for hybridplugin

* add tp+zero tests

* fix bucket arguments
This commit is contained in:
Baizhou Zhang
2023-08-21 12:04:52 +08:00
committed by GitHub
parent 8739aa7fa0
commit 1c7df566e2
9 changed files with 136 additions and 37 deletions

View File

@@ -56,9 +56,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
atol, rtol = 1e-4, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
#check_weight(bert.embeddings.word_embeddings, sharded_bert.embeddings.word_embeddings, tp_group, atol=1e-5, rtol=1e-3)
#check_weight(bert.encoder.layer[0].attention.self.query, sharded_bert.encoder.layer[0].attention.self.query, tp_group, atol=5e-3, rtol=1e-3)
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
check_grad(bert, sharded_bert, col_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1, verbose=False)
check_grad(bert, sharded_bert, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0, verbose=False)
@@ -101,6 +99,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
def run_bert_test(test_config):

View File

@@ -53,7 +53,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check grad
row_layer_for_check = ['h[0].self_attention.query_key_value', 'word_embeddings']
col_layer_for_check = ['h[0].self_attention.dense']
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
atol, rtol = 1e-6, 1e-5
else:
@@ -101,6 +101,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
def run_bloom_test(test_config):

View File

@@ -55,7 +55,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check grad
row_layer_for_check = ['encoder.layers[0].self_attention.query_key_value', 'embedding.word_embeddings']
col_layer_for_check = ['encoder.layers[0].self_attention.dense']
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
atol, rtol = 1e-6, 1e-3
else:
@@ -125,6 +125,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
def run_chatglm_test(test_config):

View File

@@ -56,7 +56,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
row_layer_for_check = ['wte', 'h[0].mlp.c_proj']
# check grad
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
atol, rtol = 1e-4, 1e-3
else:
@@ -120,6 +120,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'use_lazy_init': True,
'enable_sequence_parallelism': True,
'precision': 'fp32',
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
@clear_cache_before_run()
def run_gpt2_test(test_config):

View File

@@ -60,7 +60,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check grad
row_layer_for_check = ['layers[0].self_attn.q_proj', 'embed_tokens']
col_layer_for_check = ['layers[0].self_attn.o_proj']
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
atol, rtol = 1e-6, 1e-4
else:
@@ -135,6 +135,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
def run_llama_test(test_config):

View File

@@ -58,7 +58,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check grad
row_layer_for_check = ['decoder.layers[0].self_attn.q_proj', 'decoder.embed_tokens'] # 'decoder.embed_tokens'
col_layer_for_check = ['decoder.layers[0].self_attn.out_proj']
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
atol, rtol = 1e-6, 1e-3
else:
@@ -127,6 +127,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
def run_opt_test(test_config):

View File

@@ -55,12 +55,12 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
row_layer_for_check = ['shared', 'encoder.block[0].layer[0].SelfAttention.q']
# check weights and gradients
# check grad
if test_config['precision'] == 'fp32':
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
check_grad(t5, sharded_t5, row_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=0)
# check weights after optimizer.step()
@@ -110,6 +110,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': True,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
@clear_cache_before_run()
def run_t5_test(test_config):

View File

@@ -55,7 +55,7 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
# check grad
row_layer_for_check = ['encoder.layer[0].attention.attention.query', 'embeddings.patch_embeddings.projection']
col_layer_for_check = ['encoder.layer[0].attention.output.dense']
if stage_manager is None or stage_manager.is_first_stage():
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
if test_config['precision'] == 'fp32':
atol, rtol = 1e-5, 1e-3
else:
@@ -124,6 +124,14 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32'
}, {
'tp_size': 2,
'pp_size': 1,
'enable_all_optimization': True,
'use_lazy_init': False,
'zero_stage': 2,
'precision': 'fp16',
'initial_scale': 1
}])
def run_vit_test(test_config):