mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-10-08 12:52:26 +00:00
[inference] refactor examples and fix schedule (#5077)
* [setup] refactor infer setup * [hotfix] fix infenrece behavior on 1 1 gpu * [exmaple] refactor inference examples
This commit is contained in:
@@ -7,11 +7,17 @@ from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
import colossalai
|
||||
from colossalai.inference import InferenceEngine
|
||||
from colossalai.testing import spawn
|
||||
from colossalai.utils.device import get_current_device
|
||||
|
||||
INPUT_TEXTS = [
|
||||
"What is the longest river in the world?",
|
||||
"Explain the difference between process and thread in compouter science.",
|
||||
]
|
||||
|
||||
|
||||
def run_inference(args):
|
||||
llama_model_path = args.model_path
|
||||
llama_tokenize_path = args.tokenizer_path
|
||||
llama_tokenize_path = args.tokenizer_path or args.model_path
|
||||
|
||||
max_input_len = args.max_input_len
|
||||
max_output_len = args.max_output_len
|
||||
@@ -22,11 +28,10 @@ def run_inference(args):
|
||||
rank = dist.get_rank()
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(llama_tokenize_path, padding_side="left")
|
||||
tokenizer.pad_token_id = tokenizer.unk_token_id
|
||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||
|
||||
if args.quant is None:
|
||||
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.unk_token_id)
|
||||
model = model.half()
|
||||
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.pad_token_id)
|
||||
elif args.quant == "gptq":
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
|
||||
@@ -45,18 +50,21 @@ def run_inference(args):
|
||||
model=model,
|
||||
max_input_len=max_input_len,
|
||||
max_output_len=max_output_len,
|
||||
max_batch_size=max_batch_size,
|
||||
micro_batch_size=micro_batch_size,
|
||||
quant=args.quant,
|
||||
dtype=args.dtype,
|
||||
)
|
||||
|
||||
input_tokens = {
|
||||
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
|
||||
}
|
||||
inputs = tokenizer(INPUT_TEXTS, return_tensors="pt", padding="longest", max_length=max_input_len, truncation=True)
|
||||
inputs = {k: v.to(get_current_device()) for k, v in inputs.items()}
|
||||
outputs = engine.generate(inputs)
|
||||
|
||||
outputs = engine.generate(input_tokens)
|
||||
if rank == 0:
|
||||
print(tokenizer.batch_decode(outputs))
|
||||
output_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
||||
for input_text, output_text in zip(INPUT_TEXTS, output_texts):
|
||||
print(f"Input: {input_text}")
|
||||
print(f"Output: {output_text}")
|
||||
|
||||
|
||||
def run_tp_pipeline_inference(rank, world_size, port, args):
|
||||
@@ -67,8 +75,8 @@ def run_tp_pipeline_inference(rank, world_size, port, args):
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-p", "--model_path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("--tokenizer_path", type=str, help="Tokenizer path", required=True)
|
||||
|
||||
parser.add_argument("-i", "--input", default="What is the longest river in the world?")
|
||||
parser.add_argument("-t", "--tokenizer_path", type=str, help="Tokenizer path", default=None)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--quant",
|
||||
@@ -78,12 +86,13 @@ if __name__ == "__main__":
|
||||
help="quantization type: 'gptq' or 'smoothquant'",
|
||||
)
|
||||
parser.add_argument("--smoothquant_base_name", type=str, default=None, help="soothquant base name")
|
||||
parser.add_argument("-tp", "--tp_size", type=int, default=2, help="Tensor parallel size")
|
||||
parser.add_argument("-pp", "--pp_size", type=int, default=2, help="Pipeline parallel size")
|
||||
parser.add_argument("--tp_size", type=int, default=1, help="Tensor parallel size")
|
||||
parser.add_argument("--pp_size", type=int, default=1, help="Pipeline parallel size")
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=4, help="Maximum batch size")
|
||||
parser.add_argument("--max_input_len", type=int, default=32, help="Maximum input length")
|
||||
parser.add_argument("--max_output_len", type=int, default=16, help="Maximum output length")
|
||||
parser.add_argument("--max_input_len", type=int, default=2048, help="Maximum input length")
|
||||
parser.add_argument("--max_output_len", type=int, default=64, help="Maximum output length")
|
||||
parser.add_argument("--micro_batch_size", type=int, default=1, help="Micro batch size")
|
||||
parser.add_argument("--dtype", default="fp16", type=str)
|
||||
|
||||
args = parser.parse_args()
|
||||
spawn(run_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args)
|
||||
|
Reference in New Issue
Block a user