mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-08 20:40:34 +00:00
[tensor] add ColoTensor 1Dcol (#888)
This commit is contained in:
@@ -16,6 +16,69 @@ from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
|
||||
|
||||
from _utils import check_equal, replace_parameter_add_grad, broadcast_tensor_chunk
|
||||
|
||||
def run_linear_tp1d_col_test():
|
||||
device = get_current_device()
|
||||
dtype = torch.float32
|
||||
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||
in_features = 4
|
||||
out_features = 8
|
||||
|
||||
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||
|
||||
layer_master = torch.nn.Linear(in_features, out_features)
|
||||
layer = torch.nn.Linear(in_features, out_features)
|
||||
|
||||
A_shape = (2, in_features)
|
||||
A_master = torch.randn(A_shape, dtype=dtype, device=device)
|
||||
A = broadcast_tensor_chunk(A_master, chunk_size=1)
|
||||
A.requires_grad = True
|
||||
|
||||
W_shape = (out_features, in_features)
|
||||
W_master = torch.randn(W_shape, dtype=dtype, device=device)
|
||||
W = broadcast_tensor_chunk(W_master, chunk_size=1)
|
||||
W.requires_grad = True
|
||||
|
||||
B_shape = (out_features)
|
||||
B_master = torch.randn(B_shape, dtype=dtype, device=device)
|
||||
B = broadcast_tensor_chunk(B_master, chunk_size=1)
|
||||
B.requires_grad = True
|
||||
|
||||
# replace the torch nn.Parameters with ColoTensor
|
||||
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
||||
sharded_bias = ColoTensor.init_from_torch_tensor(B)
|
||||
parallel_action_list = [
|
||||
ParallelAction(priority=1, compute_pattern=ComputePattern.TP1DCol, parallel_mode=ParallelMode.PARALLEL_1D)
|
||||
]
|
||||
spec = TensorSpec(parallel_action_list)
|
||||
sharded_weight.set_spec(spec) # reshard
|
||||
sharded_bias.set_spec(spec)
|
||||
|
||||
replace_parameter_add_grad(layer, sharded_weight, sharded_bias)
|
||||
out = layer(A)
|
||||
|
||||
replace_parameter_add_grad(layer_master, W_master, B_master)
|
||||
A_master.requires_grad = True
|
||||
#C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
|
||||
C_master = layer_master(A_master)
|
||||
C = C_master.clone()
|
||||
|
||||
check_equal(out, C)
|
||||
|
||||
grad_shape = C_master.shape
|
||||
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
||||
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
|
||||
out.backward(grad)
|
||||
|
||||
grad_master = grad_master.clone()
|
||||
C_master.backward(grad_master)
|
||||
|
||||
W_grad = W_master.grad
|
||||
W_grad = torch.chunk(W_grad, DEPTH, dim=0)[local_rank]
|
||||
check_equal(W_grad, layer.weight.grad)
|
||||
|
||||
B_grad = B_master.grad
|
||||
B_grad = torch.chunk(B_grad, DEPTH, dim=0)[local_rank]
|
||||
check_equal(B_grad, layer.bias.grad)
|
||||
|
||||
def run_linear_tp1d_row_test():
|
||||
device = get_current_device()
|
||||
@@ -83,7 +146,7 @@ def run_dist(rank, world_size, port):
|
||||
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
run_linear_tp1d_row_test()
|
||||
|
||||
run_linear_tp1d_col_test()
|
||||
|
||||
@pytest.mark.dist
|
||||
@parameterize('world_size', [1, 4])
|
||||
|
Reference in New Issue
Block a user