[Inference] Update rms norm kernel, benchmark with vLLM (#5315)

* add

* xi

* del

* del

* fix
This commit is contained in:
Jianghai
2024-01-29 10:22:33 +08:00
committed by GitHub
parent 7ddd8b37f0
commit 1f8a75d470
2 changed files with 17 additions and 20 deletions

View File

@@ -23,7 +23,6 @@ if HAS_TRITON:
eps, # epsilon to avoid division by zero
BLOCK_SIZE: tl.constexpr,
):
# This triton kernel implements Root Mean Square Layer Norm (RMSNorm).
# Map the program id to the row of X and Y it should compute.
@@ -54,18 +53,19 @@ if HAS_TRITON:
def rms_layernorm(x, weight, eps):
# allocate output
y = torch.empty_like(x)
# reshape input data into 2D tensor
# reshape input data into 2D tensor, (total token, hidden_size)
x_arg = x.reshape(-1, x.shape[-1])
M, N = x_arg.shape
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > BLOCK_SIZE:
if N > MAX_FUSED_SIZE:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
num_warps = min(max(triton.next_power_of_2(N) // 256, 8), 32)
# enqueue kernel
_rmsnorm_kernel[(M,)](
x_arg, y, weight, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps
)
_rmsnorm_kernel[(M,)](x_arg, y, weight, x_arg.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
return y