[Inference] Update rms norm kernel, benchmark with vLLM (#5315)

* add

* xi

* del

* del

* fix
This commit is contained in:
Jianghai
2024-01-29 10:22:33 +08:00
committed by GitHub
parent 7ddd8b37f0
commit 1f8a75d470
2 changed files with 17 additions and 20 deletions

View File

@@ -1,11 +1,12 @@
import pytest
import torch
from packaging import version
import triton
from packaging import version
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from vllm.model_executor.layers.layernorm import RMSNorm
from colossalai.kernel.triton import rms_layernorm
from colossalai.testing.utils import parameterize
from transformers.models.llama.modeling_llama import LlamaRMSNorm
try:
pass
@@ -24,7 +25,6 @@ TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
@parameterize("M", [2, 4, 8, 16])
@parameterize("N", [64, 128])
def test_layer_norm(M, N):
dtype = torch.float16
eps = 1e-5
x_shape = (M, N)
@@ -39,15 +39,14 @@ def test_layer_norm(M, N):
assert torch.allclose(y_triton, y_llama, atol=1e-5, rtol=1e-5)
# Triton benchmark plot attributions
configs = [
triton.testing.Benchmark(
x_names=["SEQUENCE_TOTAL"],
x_vals=[i for i in range(128, 1025, 128)],
line_arg="provider",
line_vals=["llama_rms_layernorm", "triton_rms_layernorm"],
line_names=["llama_rms_layernorm", "triton_rms_layernorm"],
line_vals=["vllm_rms_layernorm", "triton_rms_layernorm"],
line_names=["vllm_rms_layernorm", "triton_rms_layernorm"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"RMSNorm benchmarking results",
@@ -63,18 +62,17 @@ def benchmark_rms_layernorm(
HIDDEN_SIZE: int,
):
warmup = 10
rep = 100
rep = 1000
dtype = torch.float16
eps = 1e-5
x_shape = (SEQUENCE_TOTAL, HIDDEN_SIZE)
w_shape = (x_shape[-1],)
weight = torch.ones(w_shape, dtype=dtype, device="cuda")
rms_norm = LlamaRMSNorm(hidden_size=HIDDEN_SIZE, eps=eps).cuda()
vllm_norm = RMSNorm(hidden_size=HIDDEN_SIZE).to(dtype=dtype, device="cuda")
x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device="cuda")
if provider == "llama_rms_layernorm":
fn = lambda: rms_norm.forward(x).to(dtype)
if provider == "vllm_rms_layernorm":
fn = lambda: vllm_norm(x)
elif provider == "triton_rms_layernorm":
fn = lambda: rms_layernorm(x, weight, eps=eps)
else:
@@ -83,9 +81,8 @@ def benchmark_rms_layernorm(
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if __name__ == "__main__":
test_layer_norm()
# benchmark_rms_layernorm.run(save_path=".")
# benchmark_rms_layernorm.run(save_path=".", print_data=True)