mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-15 22:19:38 +00:00
[Inference] User Experience: update the logic of default tokenizer and generation config. (#5337)
* add * fix * fix * pause * fix * fix pytest * align * fix * license * fix * fix * fix readme * fix some bugs * remove tokenizer config
This commit is contained in:
@@ -33,7 +33,7 @@ class InferenceEngine:
|
||||
|
||||
Args:
|
||||
model (nn.Module): Path or nn.Module of this model.
|
||||
tokenizer (Union[PreTrainedTokenizer, PreTrainedTokenizerFast]): Path of the tokenizer to use.
|
||||
tokenizer Optional[(Union[PreTrainedTokenizer, PreTrainedTokenizerFast])]: Path of the tokenizer to use.
|
||||
inference_config (Optional[InferenceConfig], optional): Store the configuration information related to inference.
|
||||
verbose (bool): Determine whether or not to log the generation process.
|
||||
model_policy ("Policy"): the policy to shardformer model. It will be determined by the model type if not provided.
|
||||
@@ -42,19 +42,20 @@ class InferenceEngine:
|
||||
def __init__(
|
||||
self,
|
||||
model: nn.Module,
|
||||
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
||||
inference_config: Optional["InferenceConfig"] = None,
|
||||
tokenizer: [Union[PreTrainedTokenizer, PreTrainedTokenizerFast]],
|
||||
inference_config: InferenceConfig,
|
||||
verbose: bool = False,
|
||||
model_policy: Policy = None,
|
||||
) -> None:
|
||||
assert inference_config, "Please provide inference_config."
|
||||
self.tokenizer = tokenizer
|
||||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||||
assert tokenizer, "Please provide a tokenizer, either a defined one or str"
|
||||
self.inference_config = inference_config
|
||||
self.model_config = model.config
|
||||
self.device = torch.device("cuda")
|
||||
self.dtype = inference_config.dtype
|
||||
|
||||
self.tokenizer = tokenizer
|
||||
self.tokenizer.pad_token = self.tokenizer.eos_token
|
||||
self.generation_config = inference_config.to_generation_config(self.model_config)
|
||||
model = model.eval()
|
||||
model.to(self.dtype)
|
||||
|
||||
@@ -80,6 +81,8 @@ class InferenceEngine:
|
||||
|
||||
self.request_handler = RequestHandler(self.inference_config, self.model_config)
|
||||
self.k_cahce, self.v_cache = self.request_handler.get_kvcache()
|
||||
# DISCUSS maybe move this into batch info?
|
||||
|
||||
self.counter = count()
|
||||
|
||||
def _verify_config(self) -> None:
|
||||
@@ -137,7 +140,7 @@ class InferenceEngine:
|
||||
self,
|
||||
prompts: List[str] = None,
|
||||
prompts_token_ids: Union[List[int], torch.Tensor, np.ndarray] = None,
|
||||
generation_config: GenerationConfig = None,
|
||||
generation_config: Optional[GenerationConfig] = None,
|
||||
) -> List[str]:
|
||||
"""
|
||||
Executing the inference step.
|
||||
@@ -158,6 +161,10 @@ class InferenceEngine:
|
||||
output_seqs_list = []
|
||||
output_tokens_list = []
|
||||
|
||||
# intuition: If user provide a generation config, we should replace the existing one.
|
||||
if generation_config is not None:
|
||||
self.generation_config = generation_config
|
||||
|
||||
while self.request_handler.check_unfinished_seqs():
|
||||
output_seqs_list += self.step()
|
||||
|
||||
@@ -285,8 +292,8 @@ class InferenceEngine:
|
||||
|
||||
if self.inference_config.pad_input:
|
||||
logits = logits[:, -1, :]
|
||||
|
||||
self.request_handler.search_tokens(self.generation_config, logits)
|
||||
|
||||
finished_sequences = self.request_handler.update()
|
||||
|
||||
return finished_sequences
|
||||
|
@@ -2,6 +2,7 @@ from typing import List
|
||||
|
||||
import torch
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
from colossalai.inference.config import InferenceConfig
|
||||
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
||||
@@ -94,6 +95,10 @@ class RequestHandler:
|
||||
head_dim = model_config.hidden_size // model_config.num_attention_heads
|
||||
|
||||
fd_inter_tensor = FDIntermTensors()
|
||||
|
||||
if fd_inter_tensor._tensors_initialized:
|
||||
fd_inter_tensor._reset()
|
||||
|
||||
fd_inter_tensor.initialize(
|
||||
max_batch_size=self.max_batch_size,
|
||||
num_attn_heads=model_config.num_attention_heads,
|
||||
@@ -170,6 +175,7 @@ class RequestHandler:
|
||||
self.cache_manager.allocate_context_from_block_table(seq.block_table, seq.sentence_len)
|
||||
for seq in remove_list:
|
||||
lst.remove(seq)
|
||||
|
||||
if self.running_list.ready_for_prefill():
|
||||
for seq in self.running_list.prefill:
|
||||
seq.mark_running()
|
||||
@@ -229,7 +235,7 @@ class RequestHandler:
|
||||
|
||||
return None
|
||||
|
||||
def _sample(self, probs: torch.Tensor, logprobs: torch.Tensor, generation_config):
|
||||
def _sample(self, probs: torch.Tensor, logprobs: torch.Tensor, generation_config: GenerationConfig):
|
||||
if generation_config.num_beams == 1:
|
||||
if generation_config.do_sample:
|
||||
sample_tokens = multinomial_sample(generation_config, probs)
|
||||
@@ -240,7 +246,7 @@ class RequestHandler:
|
||||
|
||||
return sample_tokens
|
||||
|
||||
def mark_finished(self, sequence: Sequence, generation_config):
|
||||
def mark_finished(self, sequence: Sequence, generation_config: GenerationConfig):
|
||||
if (
|
||||
sequence.output_token_id[-1] == generation_config.eos_id
|
||||
or sequence.output_len >= generation_config.max_output_len
|
||||
@@ -250,7 +256,7 @@ class RequestHandler:
|
||||
def check_unfinished_seqs(self) -> bool:
|
||||
return self._has_waiting() or not self.running_list.is_empty()
|
||||
|
||||
def search_tokens(self, generation_config, logits):
|
||||
def search_tokens(self, generation_config: GenerationConfig, logits):
|
||||
"""
|
||||
Sample tokens for finished requests.
|
||||
"""
|
||||
|
Reference in New Issue
Block a user