[Inference] User Experience: update the logic of default tokenizer and generation config. (#5337)

* add

* fix

* fix

* pause

* fix

* fix pytest

* align

* fix

* license

* fix

* fix

* fix readme

* fix some bugs

* remove tokenizer config
This commit is contained in:
Jianghai
2024-02-07 17:55:48 +08:00
committed by GitHub
parent 6fb4bcbb24
commit 1f8c7e7046
7 changed files with 62 additions and 23 deletions

View File

@@ -2,6 +2,7 @@ from typing import List
import torch
from transformers.configuration_utils import PretrainedConfig
from transformers.generation import GenerationConfig
from colossalai.inference.config import InferenceConfig
from colossalai.inference.flash_decoding_utils import FDIntermTensors
@@ -94,6 +95,10 @@ class RequestHandler:
head_dim = model_config.hidden_size // model_config.num_attention_heads
fd_inter_tensor = FDIntermTensors()
if fd_inter_tensor._tensors_initialized:
fd_inter_tensor._reset()
fd_inter_tensor.initialize(
max_batch_size=self.max_batch_size,
num_attn_heads=model_config.num_attention_heads,
@@ -170,6 +175,7 @@ class RequestHandler:
self.cache_manager.allocate_context_from_block_table(seq.block_table, seq.sentence_len)
for seq in remove_list:
lst.remove(seq)
if self.running_list.ready_for_prefill():
for seq in self.running_list.prefill:
seq.mark_running()
@@ -229,7 +235,7 @@ class RequestHandler:
return None
def _sample(self, probs: torch.Tensor, logprobs: torch.Tensor, generation_config):
def _sample(self, probs: torch.Tensor, logprobs: torch.Tensor, generation_config: GenerationConfig):
if generation_config.num_beams == 1:
if generation_config.do_sample:
sample_tokens = multinomial_sample(generation_config, probs)
@@ -240,7 +246,7 @@ class RequestHandler:
return sample_tokens
def mark_finished(self, sequence: Sequence, generation_config):
def mark_finished(self, sequence: Sequence, generation_config: GenerationConfig):
if (
sequence.output_token_id[-1] == generation_config.eos_id
or sequence.output_len >= generation_config.max_output_len
@@ -250,7 +256,7 @@ class RequestHandler:
def check_unfinished_seqs(self) -> bool:
return self._has_waiting() or not self.running_list.is_empty()
def search_tokens(self, generation_config, logits):
def search_tokens(self, generation_config: GenerationConfig, logits):
"""
Sample tokens for finished requests.
"""