[shardformer] made tensor parallelism configurable (#4144)

* [shardformer] made tensor parallelism configurable

* polish code
This commit is contained in:
Frank Lee
2023-07-04 09:57:03 +08:00
parent 74257cb446
commit 1fb0d95df0
15 changed files with 819 additions and 673 deletions

View File

@@ -3,12 +3,13 @@ import copy
from colossalai.shardformer import ShardConfig, ShardFormer
def build_model(model_fn):
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True):
# create new model
org_model = model_fn().cuda()
# shard model
shard_config = ShardConfig(enable_fused_normalization=True)
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model = shard_former.optimize(model_copy).cuda()

View File

@@ -3,7 +3,14 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
@@ -33,34 +40,48 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# compare self attention grad
org_grad = bert.encoder.layer[0].attention.self.query.weight.grad
shard_grad = sharded_bert.encoder.layer[0].attention.self.query.weight.grad
shard_weight = sharded_bert.encoder.layer[0].attention.self.query.weight
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# compare embedding grad
org_grad = bert.embeddings.word_embeddings.weight.grad
shard_grad = sharded_bert.embeddings.word_embeddings.weight.grad
shard_weight = sharded_bert.embeddings.word_embeddings.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_bert_test(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_bert(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_bert')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
run_bert_test()
@pytest.mark.dist

View File

@@ -3,7 +3,14 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
@@ -32,10 +39,14 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check attention grad
org_grad = bloom.h[0].self_attention.query_key_value.weight.grad
shard_grad = sharded_bloom.h[0].self_attention.query_key_value.weight.grad
shard_weight = sharded_bloom.h[0].self_attention.query_key_value.weight
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@@ -43,25 +54,33 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check embedding weights
org_grad = bloom.word_embeddings.weight.grad
shard_grad = sharded_bloom.word_embeddings.weight.grad
shard_weight = sharded_bloom.word_embeddings.weight
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_bloom_test(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_bloom(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_bloom')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
run_bloom_test()
@pytest.mark.dist

View File

@@ -3,7 +3,14 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
@@ -32,11 +39,14 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check mlp grad
org_grad = org_model.h[0].mlp.c_fc.weight.grad
shard_grad = sharded_model.h[0].mlp.c_fc.weight.grad
shard_weight = sharded_model.h[0].mlp.c_fc.weight
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
else:
all_shard_grad = shard_grad
assert torch.allclose(
org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to origin model grad\n{org_grad}\n{all_shard_grad}"
@@ -44,25 +54,33 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check embedding weights
org_grad = org_model.wte.weight.grad
shard_grad = sharded_model.wte.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
shard_weight = sharded_model.wte.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(
org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to origin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_gpt2_test(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_gpt2(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
run_gpt2_test()
@pytest.mark.dist

View File

@@ -5,7 +5,14 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
@@ -37,33 +44,46 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check attention grad
org_grad = llama_model.layers[0].self_attn.q_proj.weight.grad
shard_grad = shard_llama_model.layers[0].self_attn.q_proj.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
shard_weight = shard_llama_model.layers[0].self_attn.q_proj.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
# check embedding grad
org_grad = llama_model.embed_tokens.weight.grad
shard_grad = shard_llama_model.embed_tokens.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
shard_weight = shard_llama_model.embed_tokens.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_gpt2_llama(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
run_gpt2_llama()
@pytest.mark.dist

View File

@@ -6,10 +6,11 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
@@ -42,32 +43,46 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check attention grad
org_grad = opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
shard_grad = shard_opt_model.decoder.layers[0].self_attn.q_proj.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
shard_weight = shard_opt_model.decoder.layers[0].self_attn.q_proj.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
# check embedding grad
org_grad = opt_model.decoder.embed_tokens.weight.grad
shard_grad = shard_opt_model.decoder.embed_tokens.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
shard_weight = shard_opt_model.decoder.embed_tokens.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(4)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_OPTModel(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_opt')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
run_t5_test()
@pytest.mark.dist

View File

@@ -5,7 +5,14 @@ import torch
import colossalai
from colossalai.logging import disable_existing_loggers
from colossalai.testing import assert_hf_output_close, clear_cache_before_run, rerun_if_address_is_in_use, spawn
from colossalai.tensor.d_tensor.api import is_customized_distributed_tensor, is_distributed_tensor
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, run_forward
@@ -27,19 +34,28 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
# check attention grad
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight.grad
shard_weight = sharded_model.encoder.block[0].layer[0].SelfAttention.q.weight
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
shard_grad = torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{shard_grad}"
# check self attention embed
org_grad = org_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad
shard_grad = sharded_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
shard_weight = sharded_model.encoder.block[0].layer[0].SelfAttention.relative_attention_bias.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=1)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@@ -52,23 +68,32 @@ def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transfo
assert sharded_model.shared.weight.data.data_ptr() == sharded_model.lm_head.weight.data.data_ptr()
shard_grad = sharded_model.shared.weight.grad
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
shard_weight = sharded_model.shared.weight
if is_distributed_tensor(shard_weight) or is_customized_distributed_tensor(shard_weight):
shard_grad_list = [torch.zeros([*shard_grad.shape]).to('cuda') for _ in range(2)]
torch.distributed.all_gather(shard_grad_list, shard_grad)
all_shard_grad = torch.cat(shard_grad_list, dim=0)
else:
all_shard_grad = shard_grad
assert torch.allclose(org_grad, all_shard_grad,
atol=1e-5), f"shard model grad is not equal to orgin model grad\n{org_grad}\n{all_shard_grad}"
@parameterize('enable_fused_normalization', [True, False])
@parameterize('enable_tensor_parallelism', [True, False])
def run_t5_test(enable_fused_normalization, enable_tensor_parallelism):
sub_model_zoo = model_zoo.get_sub_registry('transformers_t5')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn, enable_fused_normalization, enable_tensor_parallelism)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
def check_t5(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
sub_model_zoo = model_zoo.get_sub_registry('transformers_t5')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
org_model, sharded_model = build_model(model_fn)
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
torch.cuda.empty_cache()
run_t5_test()
@pytest.mark.dist