[Gemini] remove GLOBAL_MODEL_DATA_TRACER (#2091)

This commit is contained in:
Jiarui Fang
2022-12-06 22:30:16 +08:00
committed by GitHub
parent 28e55c2530
commit 1fca5d79ea
4 changed files with 6 additions and 181 deletions

View File

@@ -1,11 +1,10 @@
from .memory_monitor import AsyncMemoryMonitor, SyncCudaMemoryMonitor # isort:skip
from .memstats_collector import MemStatsCollector # isort:skip
from .model_data_memtracer import GLOBAL_MODEL_DATA_TRACER # isort:skip
from .chunk_memstats_collector import ChunkMemStatsCollector # isort:skip
from .static_memstats_collector import StaticMemStatsCollector # isort:skip
from .memory_stats import MemStats
__all__ = [
'AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector', 'ChunkMemStatsCollector',
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER', 'MemStats'
'StaticMemStatsCollector', 'MemStats'
]

View File

@@ -2,9 +2,6 @@ from typing import Optional, Tuple
import torch
from colossalai.context.singleton_meta import SingletonMeta
from colossalai.logging import DistributedLogger
def colo_model_optimizer_usage(optim) -> Tuple[int, int]:
"""Trace the optimizer memory usage
@@ -60,52 +57,3 @@ def colo_model_mem_usage(model: torch.nn.Module) -> Tuple[int, int]:
cpu_mem_usage += t_cpu
return cuda_mem_usage, cpu_mem_usage
class ModelDataTracer(metaclass=SingletonMeta):
"""
A tracer singleton to trace model data usage during runtime.
You have to register a model on the singleton first.
"""
def __init__(self) -> None:
self._logger = DistributedLogger("ModelDataTracer")
self._model = None
self._opitimizer = None
def _get_mem_usage(self) -> Tuple[int, int]:
"""
get the memory usage of the model registered.
Returns:
Tuple[int, int]: cuda, cpu mem usage
"""
cuda_use_opt, cpu_use_opt = colo_model_optimizer_usage(self._opitimizer)
cuda_use_model, cpu_use_model = colo_model_mem_usage(self._model)
return cuda_use_opt + cuda_use_model, cpu_use_opt + cpu_use_model
def register_model(self, model) -> None:
if self._model is not None:
self._logger.warning("ModelDataTracer has already registered a model")
self._model = model
def register_optimizer(self, optimizer) -> None:
if self._opitimizer is not None:
self._logger.warning("ModelDataTracer has already registered an optimizer")
self._opitimizer = optimizer
@property
def cpu_usage(self):
_, cpu_usage = self._get_mem_usage()
return cpu_usage
@property
def cuda_usage(self):
cuda_usage, _ = self._get_mem_usage()
return cuda_usage
@property
def both_mem_usage(self):
return self._get_mem_usage()
GLOBAL_MODEL_DATA_TRACER = ModelDataTracer()