mirror of
https://github.com/hpcaitech/ColossalAI.git
synced 2025-09-05 11:02:05 +00:00
[shardformer] add Dropout layer support different dropout pattern (#3856)
* add dropout layer, add dropout test * modify seed manager as context manager * add a copy of col_nn.layer * add dist_crossentropy loss; separate module test * polish the code * fix dist crossentropy loss
This commit is contained in:
97
colossalai/shardformer/layer/_operation.py
Normal file
97
colossalai/shardformer/layer/_operation.py
Normal file
@@ -0,0 +1,97 @@
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
from colossalai.core import global_context as gpc
|
||||
|
||||
try:
|
||||
import fused_mix_prec_layer_norm_cuda
|
||||
except:
|
||||
fused_mix_prec_layer_norm_cuda = None
|
||||
|
||||
|
||||
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
|
||||
r"""Layernorm
|
||||
|
||||
Args:
|
||||
input: input matrix.
|
||||
weight: weight matrix.
|
||||
bias: bias matrix.
|
||||
normalized_shape: input shape from an expected input of size.
|
||||
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
|
||||
If a single integer is used, it is treated as a singleton list, and this module will
|
||||
normalize over the last dimension which is expected to be of that specific size.
|
||||
eps: a value added to the denominator for numerical stability
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input, weight, bias, normalized_shape, eps):
|
||||
ctx.normalized_shape = normalized_shape
|
||||
ctx.eps = eps
|
||||
input_ = input.contiguous()
|
||||
weight_ = weight.contiguous()
|
||||
bias_ = bias.contiguous()
|
||||
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_,
|
||||
bias_, ctx.eps)
|
||||
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
|
||||
grad_input = grad_weight = grad_bias = None
|
||||
grad_input, grad_weight, grad_bias \
|
||||
= fused_mix_prec_layer_norm_cuda.backward_affine(
|
||||
grad_output.contiguous(), mean, invvar,
|
||||
input_, ctx.normalized_shape,
|
||||
weight_, bias_, ctx.eps)
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None
|
||||
|
||||
|
||||
class LinearWithAsyncCommunication(torch.autograd.Function):
|
||||
"""
|
||||
Linear layer execution with asynchronous communication in backprop.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, input_, weight, bias, parallel_mode, async_grad_allreduce):
|
||||
ctx.save_for_backward(input_, weight)
|
||||
ctx.use_bias = bias is not None
|
||||
ctx.parallel_mode = parallel_mode
|
||||
ctx.async_grad_allreduce = async_grad_allreduce
|
||||
|
||||
output = torch.matmul(input_, weight.t())
|
||||
if bias is not None:
|
||||
output = output + bias
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
input, weight = ctx.saved_tensors
|
||||
use_bias = ctx.use_bias
|
||||
|
||||
total_input = input
|
||||
grad_input = grad_output.matmul(weight)
|
||||
grad_output = grad_output.contiguous()
|
||||
# Convert the tensor shapes to 2D for execution compatibility
|
||||
grad_output = grad_output.view(grad_output.shape[0] * grad_output.shape[1], grad_output.shape[2])
|
||||
total_input = total_input.view(total_input.shape[0] * total_input.shape[1], total_input.shape[2])
|
||||
|
||||
if ctx.async_grad_allreduce:
|
||||
# Asynchronous all-reduce
|
||||
handle = dist.all_reduce(grad_input, group=gpc.get_group(ctx.parallel_mode), async_op=True)
|
||||
# Delay the start of weight gradient computation shortly (3us) to have
|
||||
# all-reduce scheduled first and have GPU resources allocated
|
||||
_ = torch.empty(1, device=grad_output.device) + 1
|
||||
|
||||
grad_weight = grad_output.t().matmul(total_input)
|
||||
grad_bias = grad_output.sum(dim=0) if use_bias else None
|
||||
|
||||
if ctx.async_grad_allreduce:
|
||||
handle.wait()
|
||||
|
||||
return grad_input, grad_weight, grad_bias, None, None, None
|
||||
|
||||
|
||||
def linear_with_async_comm(input_, weight, bias, parallel_mode, async_grad_allreduce):
|
||||
return LinearWithAsyncCommunication.apply(input_, weight, bias, parallel_mode, async_grad_allreduce)
|
Reference in New Issue
Block a user