[Kernels] add inference token attention kernel (#4505)

* add token forward

* fix tests

* fix comments

* add try import triton

* add adapted license

* add tests check
This commit is contained in:
Xu Kai
2023-08-24 16:06:23 +08:00
committed by GitHub
parent c427366024
commit 222953a399
5 changed files with 643 additions and 0 deletions

View File

@@ -0,0 +1,333 @@
# Adapted from ModelTC https://github.com/ModelTC/lightllm
import math
import torch
try:
import triton
import triton.language as tl
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
if HAS_TRITON:
@triton.jit
def _token_attn_1_kernel(Q, K, sm_scale, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len,
attn_out, kv_cache_loc_b_stride, kv_cache_loc_s_stride, q_batch_stride, q_head_stride,
q_head_dim_stride, k_batch_stride, k_head_stride, k_head_dim_stride, attn_head_stride,
attn_batch_stride, HEAD_DIM: tl.constexpr, BLOCK_N: tl.constexpr):
current_batch = tl.program_id(0)
current_head = tl.program_id(1)
start_n = tl.program_id(2)
offs_d = tl.arange(0, HEAD_DIM)
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
current_batch_end_index = max_kv_cache_len
off_q = current_batch * q_batch_stride + current_head * q_head_stride + offs_d * q_head_dim_stride
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
block_stard_index = start_n * BLOCK_N
block_mask = tl.where(block_stard_index < current_batch_seq_len, 1, 0)
for start_mark in range(0, block_mask, 1):
q = tl.load(Q + off_q + start_mark)
offs_n_new = current_batch_start_index + offs_n
k_loc = tl.load(kv_cache_loc + kv_cache_loc_b_stride * current_batch + kv_cache_loc_s_stride * offs_n_new,
mask=offs_n_new < current_batch_end_index,
other=0)
off_k = k_loc[:, None] * k_batch_stride + current_head * k_head_stride + offs_d[None, :] * k_head_dim_stride
k = tl.load(K + off_k, mask=offs_n_new[:, None] < current_batch_end_index, other=0.0)
att_value = tl.sum(q[None, :] * k, 1)
att_value *= sm_scale
off_o = current_head * attn_head_stride + (current_batch_in_all_start_index + offs_n) * attn_batch_stride
tl.store(attn_out + off_o, att_value, mask=offs_n_new < current_batch_end_index)
return
@triton.jit
def _token_attn_1_alibi_kernel(Q, K, sm_scale, alibi, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen,
max_kv_cache_len, attn_out, kv_cache_loc_b_stride, kv_cache_loc_s_stride,
q_batch_stride, q_head_stride, q_head_dim_stride, k_batch_stride, k_head_stride,
k_head_dim_stride, attn_head_stride, attn_batch_stride, HEAD_DIM: tl.constexpr,
BLOCK_N: tl.constexpr):
current_batch = tl.program_id(0)
current_head = tl.program_id(1)
start_n = tl.program_id(2)
offs_d = tl.arange(0, HEAD_DIM)
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
current_batch_end_index = max_kv_cache_len
off_q = current_batch * q_batch_stride + current_head * q_head_stride + offs_d * q_head_dim_stride
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
block_stard_index = start_n * BLOCK_N
block_mask = tl.where(block_stard_index < current_batch_seq_len, 1, 0)
for start_mark in range(0, block_mask, 1):
alibi_m = tl.load(alibi + current_head)
q = tl.load(Q + off_q + start_mark)
offs_n_new = current_batch_start_index + offs_n
k_loc = tl.load(kv_cache_loc + kv_cache_loc_b_stride * current_batch + kv_cache_loc_s_stride * offs_n_new,
mask=offs_n_new < current_batch_end_index,
other=0)
off_k = k_loc[:, None] * k_batch_stride + current_head * k_head_stride + offs_d[None, :] * k_head_dim_stride
k = tl.load(K + off_k, mask=offs_n_new[:, None] < current_batch_end_index, other=0.0)
att_value = tl.sum(q[None, :] * k, 1)
att_value *= sm_scale
att_value -= alibi_m * (current_batch_seq_len - 1 - offs_n)
off_o = current_head * attn_head_stride + (current_batch_in_all_start_index + offs_n) * attn_batch_stride
tl.store(attn_out + off_o, att_value, mask=offs_n_new < current_batch_end_index)
return
@torch.no_grad()
def token_attn_fwd_1(q,
k,
attn_out,
kv_cache_loc,
kv_cache_start_loc,
kv_cache_seqlen,
max_kv_cache_len,
alibi=None):
BLOCK = 32
# shape constraints
q_head_dim, k_head_dim = q.shape[-1], k.shape[-1]
assert q_head_dim == k_head_dim
assert k_head_dim in {16, 32, 64, 128}
sm_scale = 1.0 / (k_head_dim**0.5)
batch, head_num = kv_cache_loc.shape[0], q.shape[1]
grid = (batch, head_num, triton.cdiv(max_kv_cache_len, BLOCK))
num_warps = 4 if k_head_dim <= 64 else 8
num_warps = 2
if alibi is not None:
_token_attn_1_alibi_kernel[grid](
q,
k,
sm_scale,
alibi,
kv_cache_loc,
kv_cache_start_loc,
kv_cache_seqlen,
max_kv_cache_len,
attn_out,
kv_cache_loc.stride(0),
kv_cache_loc.stride(1),
q.stride(0),
q.stride(1),
q.stride(2),
k.stride(0),
k.stride(1),
k.stride(2),
attn_out.stride(0),
attn_out.stride(1),
HEAD_DIM=k_head_dim,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_stages=1,
)
else:
_token_attn_1_kernel[grid](
q,
k,
sm_scale,
kv_cache_loc,
kv_cache_start_loc,
kv_cache_seqlen,
max_kv_cache_len,
attn_out,
kv_cache_loc.stride(0),
kv_cache_loc.stride(1),
q.stride(0),
q.stride(1),
q.stride(2),
k.stride(0),
k.stride(1),
k.stride(2),
attn_out.stride(0),
attn_out.stride(1),
HEAD_DIM=k_head_dim,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_stages=1,
)
return
@triton.jit
def _token_attn_softmax_fwd(softmax_logics, kv_cache_start_loc, kv_cache_seqlen, softmax_prob_out,
logics_head_dim_stride, logics_batch_stride, prob_head_dim_stride, prob_batch_stride,
BLOCK_SIZE: tl.constexpr):
current_batch = tl.program_id(0)
current_head = tl.program_id(1)
col_offsets = tl.arange(0, BLOCK_SIZE)
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
row = tl.load(softmax_logics + current_head * logics_head_dim_stride +
(current_batch_in_all_start_index + col_offsets) * logics_batch_stride,
mask=col_offsets < current_batch_seq_len,
other=-float('inf')).to(tl.float32)
row_minus_max = row - tl.max(row, axis=0)
numerator = tl.exp(row_minus_max)
denominator = tl.sum(numerator, axis=0)
softmax_output = numerator / denominator
tl.store(softmax_prob_out + current_head * prob_head_dim_stride +
(current_batch_in_all_start_index + col_offsets) * prob_batch_stride,
softmax_output,
mask=col_offsets < current_batch_seq_len)
return
@torch.no_grad()
def token_attn_softmax_fwd(softmax_logics, kv_cache_start_loc, kv_cache_seqlen, softmax_prob_out, max_kv_cache_len):
BLOCK_SIZE = triton.next_power_of_2(max_kv_cache_len)
batch, head_num = kv_cache_start_loc.shape[0], softmax_logics.shape[0]
num_warps = 4
if BLOCK_SIZE >= 2048:
num_warps = 8
if BLOCK_SIZE >= 4096:
num_warps = 16
_token_attn_softmax_fwd[(batch, head_num)](
softmax_logics,
kv_cache_start_loc,
kv_cache_seqlen,
softmax_prob_out,
softmax_logics.stride(0),
softmax_logics.stride(1),
softmax_prob_out.stride(0),
softmax_prob_out.stride(1),
num_warps=num_warps,
BLOCK_SIZE=BLOCK_SIZE,
)
return
@triton.jit
def _token_attn_2_kernel(Prob, V, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len,
kv_cache_loc_b_stride, kv_cache_loc_s_stride, prob_head_dim_stride, prob_batch_stride,
v_batch_stride, v_head_stride, v_head_dim_stride, attn_out_batch_stride,
attn_out_head_stride, attn_out_head_dim_stride, HEAD_DIM: tl.constexpr,
BLOCK_N: tl.constexpr):
current_batch = tl.program_id(0)
current_head = tl.program_id(1)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, HEAD_DIM)
current_batch_seq_len = tl.load(kv_cache_seqlen + current_batch)
current_batch_start_index = max_kv_cache_len - current_batch_seq_len
current_batch_end_index = current_batch_seq_len
current_batch_in_all_start_index = tl.load(kv_cache_start_loc + current_batch)
v_loc_off = current_batch * kv_cache_loc_b_stride + (current_batch_start_index + offs_n) * kv_cache_loc_s_stride
p_offs = current_head * prob_head_dim_stride + (current_batch_in_all_start_index + offs_n) * prob_batch_stride
v_offs = current_head * v_head_stride + offs_d[None, :] * v_head_dim_stride
acc = tl.zeros([HEAD_DIM], dtype=tl.float32)
for start_n in range(0, current_batch_seq_len, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
p_value = tl.load(Prob + p_offs + start_n * kv_cache_loc_s_stride,
mask=(start_n + offs_n) < current_batch_seq_len,
other=0.0)
v_loc = tl.load(kv_cache_loc + v_loc_off + start_n * kv_cache_loc_s_stride,
mask=(start_n + offs_n) < current_batch_seq_len,
other=0.0)
v_value = tl.load(V + v_offs + v_loc[:, None] * v_batch_stride,
mask=(start_n + offs_n[:, None]) < current_batch_seq_len,
other=0.0)
acc += tl.sum(p_value[:, None] * v_value, 0)
acc = acc.to(tl.float16)
off_o = current_batch * attn_out_batch_stride + current_head * attn_out_head_stride + offs_d * attn_out_head_dim_stride
out_ptrs = attn_out + off_o
tl.store(out_ptrs, acc)
return
@torch.no_grad()
def token_attn_fwd_2(prob, v, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seqlen, max_kv_cache_len):
if triton.__version__ >= "2.1.0":
BLOCK = 128
else:
BLOCK = 64
batch, head = kv_cache_loc.shape[0], v.shape[1]
grid = (batch, head)
num_warps = 4
dim = v.shape[-1]
_token_attn_2_kernel[grid](
prob,
v,
attn_out,
kv_cache_loc,
kv_cache_start_loc,
kv_cache_seqlen,
max_kv_cache_len,
kv_cache_loc.stride(0),
kv_cache_loc.stride(1),
prob.stride(0),
prob.stride(1),
v.stride(0),
v.stride(1),
v.stride(2),
attn_out.stride(0),
attn_out.stride(1),
attn_out.stride(2),
HEAD_DIM=dim,
BLOCK_N=BLOCK,
num_warps=num_warps,
num_stages=1,
)
return
@torch.no_grad()
def token_attention_fwd(q,
k,
v,
attn_out,
kv_cache_loc,
kv_cache_start_loc,
kv_cache_seq_len,
max_len_in_batch,
alibi=None):
head_num = k.shape[1]
batch_size = kv_cache_seq_len.shape[0]
calcu_shape1 = (batch_size, head_num, k.shape[2])
total_token_num = k.shape[0]
att_m_tensor = torch.empty((head_num, total_token_num), dtype=q.dtype, device="cuda")
token_attn_fwd_1(q.view(calcu_shape1),
k,
att_m_tensor,
kv_cache_loc,
kv_cache_start_loc,
kv_cache_seq_len,
max_len_in_batch,
alibi=alibi)
prob = torch.empty_like(att_m_tensor)
token_attn_softmax_fwd(att_m_tensor, kv_cache_start_loc, kv_cache_seq_len, prob, max_len_in_batch)
att_m_tensor = None
token_attn_fwd_2(prob, v, attn_out.view(calcu_shape1), kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len,
max_len_in_batch)
prob = None
return

View File

@@ -0,0 +1,114 @@
import math
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_1
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
def torch_attn(xq, xk, bs, seqlen, num_head, head_dim):
xq = xq.view(bs, 1, num_head, head_dim)
xk = xk.view(bs, seqlen, num_head, head_dim)
keys = xk
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
scores = (torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim)).squeeze().transpose(0, 1).reshape(
num_head, -1)
return scores
def torch_attn_1(xq, xk, seqlen, num_head, head_dim):
xq = xq.view(1, num_head, head_dim)
xk = xk.view(seqlen, num_head, head_dim)
logics = torch.sum(xq * xk, dim=-1, keepdim=False)
logics = logics.transpose(0, 1) / math.sqrt(head_dim)
return logics
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
def test_attn_1():
import time
batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128
dtype = torch.float16
q = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
k = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
attn_out = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda")
b_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda")
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
for i in range(batch_size):
kv_cache_start_loc[i] = i * seq_len
kv_cache_seq_len[i] = seq_len
b_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda")
# Warm up
for _ in range(10):
token_attn_fwd_1(q, k, attn_out, b_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
run_iter = 1000
torch.cuda.synchronize()
t1 = time.time()
for _ in range(run_iter):
token_attn_fwd_1(q, k, attn_out, b_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
torch.cuda.synchronize()
t2 = time.time()
print("Time cost {}".format((t2 - t1) / run_iter))
torch_out = torch_attn(q, k, batch_size, seq_len, head_num, head_dim).squeeze()
o = attn_out.squeeze()
print("max ", torch.max(torch.abs(torch_out - o)))
print("mean ", torch.mean(torch.abs(torch_out - o)))
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
# def test_alibi_attn_1():
# import torch
# batch_size, seq_len, head_num, head_dim = 2, 1025, 12, 128
# dtype = torch.float16
# q = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
# k = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
# attn_out = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda")
# # print(attn_out)
# b_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda")
# kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
# kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
# for i in range(batch_size):
# kv_cache_start_loc[i] = i * seq_len
# kv_cache_seq_len[i] = seq_len
# b_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda")
# # print(b_loc[i])
# token_attn_fwd_1(q, k, attn_out, b_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
# torch_out = torch_attn(q, k, batch_size, seq_len, head_num, head_dim).squeeze()
# o = attn_out.squeeze()
# print("max ", torch.max(torch.abs(torch_out - o)))
# print("mean ", torch.mean(torch.abs(torch_out - o)))
# assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
if __name__ == "__main__":
test_attn_1()
# test_alibi_attn_1()

View File

@@ -0,0 +1,70 @@
import math
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.token_attention_kernel import token_attn_fwd_2
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
def torch_attn(V, P, bs, seqlen, num_head, head_dim):
V = V.view(bs, seqlen, num_head, head_dim).transpose(1, 2)
P = P.reshape(num_head, bs, 1, seqlen).transpose(0, 1)
attn_out = torch.matmul(P, V)
return attn_out
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
def test_token_attn_2():
import time
batch_size, seq_len, head_num, head_dim = 17, 1025, 12, 128
dtype = torch.float16
V = torch.empty((batch_size * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=10)
Prob = torch.empty(
(head_num, batch_size * seq_len), dtype=dtype,
device="cuda").normal_(mean=0.4, std=0.2).reshape(head_num, batch_size,
seq_len).softmax(-1).reshape(head_num, batch_size * seq_len)
attn_out = torch.empty((batch_size, head_num, head_dim), dtype=dtype, device="cuda")
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
kv_cache_loc = torch.zeros((batch_size, seq_len), dtype=torch.int32, device="cuda")
for i in range(batch_size):
kv_cache_start_loc[i] = i * seq_len
kv_cache_seq_len[i] = seq_len
kv_cache_loc[i] = i * seq_len + torch.arange(0, seq_len, dtype=torch.int32, device="cuda")
# Warm up
for _ in range(10):
token_attn_fwd_2(Prob, V, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
run_iter = 1000
torch.cuda.synchronize()
t1 = time.time()
for _ in range(run_iter):
token_attn_fwd_2(Prob, V, attn_out, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, seq_len)
torch.cuda.synchronize()
t2 = time.time()
print("Time cost {}".format((t2 - t1) / run_iter))
torch_out = torch_attn(V, Prob, batch_size, seq_len, head_num, head_dim).squeeze()
o = attn_out
print("max ", torch.max(torch.abs(torch_out - o)))
print("mean ", torch.mean(torch.abs(torch_out - o)))
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
if __name__ == "__main__":
test_token_attn_2()

View File

@@ -0,0 +1,78 @@
import time
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.token_attention_kernel import token_attention_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
def torch_att(xq, xk, xv, bs, seqlen, num_head, head_dim):
xq = xq.view(bs, 1, num_head, head_dim)
xk = xk.view(bs, seqlen, num_head, head_dim)
xv = xv.view(bs, seqlen, num_head, head_dim)
logics = torch.sum(xq * xk, dim=3, keepdim=False) * 1 / (head_dim**0.5)
prob = torch.softmax(logics, dim=1)
prob = prob.view(bs, seqlen, num_head, 1)
return torch.sum(prob * xv, dim=1, keepdim=False)
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
def test():
Z, head_num, seq_len, head_dim = 22, 112 // 8, 2048, 128
dtype = torch.float16
q = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2)
k = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2)
v = torch.empty((Z * seq_len, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2)
o = torch.empty((Z, head_num, head_dim), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2)
alibi = torch.zeros((head_num,), dtype=torch.float32, device="cuda")
max_kv_cache_len = seq_len
kv_cache_start_loc = torch.zeros((Z,), dtype=torch.int32, device="cuda")
kv_cache_loc = torch.zeros((Z, seq_len), dtype=torch.int32, device="cuda")
kv_cache_seq_len = torch.ones((Z,), dtype=torch.int32, device="cuda")
kv_cache_seq_len[:] = seq_len
kv_cache_start_loc[0] = 0
kv_cache_start_loc[1] = seq_len
kv_cache_start_loc[2] = 2 * seq_len
kv_cache_start_loc[3] = 3 * seq_len
for i in range(Z):
kv_cache_loc[i, :] = torch.arange(i * seq_len, (i + 1) * seq_len, dtype=torch.int32, device="cuda")
token_attention_fwd(q, k, v, o, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_kv_cache_len, alibi=alibi)
torch.cuda.synchronize()
start = time.time()
token_attention_fwd(q, k, v, o, kv_cache_loc, kv_cache_start_loc, kv_cache_seq_len, max_kv_cache_len, alibi=alibi)
torch.cuda.synchronize()
print("cost time:", (time.time() - start) * 1000)
torch_att(q, k, v, Z, seq_len, head_num, head_dim)
torch.cuda.synchronize()
start = time.time()
torch_out = torch_att(q, k, v, Z, seq_len, head_num, head_dim)
torch.cuda.synchronize()
print("cost time:", (time.time() - start) * 1000)
print("max ", torch.max(torch.abs(torch_out - o)))
print("mean ", torch.mean(torch.abs(torch_out - o)))
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
if __name__ == "__main__":
test()

View File

@@ -0,0 +1,48 @@
import pytest
import torch
from packaging import version
try:
import triton
import triton.language as tl
from colossalai.kernel.triton.token_attention_kernel import token_attn_softmax_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse('11.4')
@pytest.mark.skipif(not TRITON_CUDA_SUPPORT or not HAS_TRITON,
reason="triton requires cuda version to be higher than 11.4")
def test_softmax():
import torch
batch_size, seq_len, head_num, head_dim = 4, 1025, 12, 128
dtype = torch.float16
Logics = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda").normal_(mean=0.1, std=10)
ProbOut = torch.empty((head_num, batch_size * seq_len), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2)
kv_cache_start_loc = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
kv_cache_seq_len = torch.zeros((batch_size,), dtype=torch.int32, device="cuda")
for i in range(batch_size):
kv_cache_start_loc[i] = i * seq_len
kv_cache_seq_len[i] = seq_len
token_attn_softmax_fwd(Logics, kv_cache_start_loc, kv_cache_seq_len, ProbOut, seq_len)
torch_out = Logics.reshape(head_num * batch_size, -1).softmax(-1).reshape(head_num, batch_size * seq_len)
o = ProbOut
print("max ", torch.max(torch.abs(torch_out - o)))
print("mean ", torch.mean(torch.abs(torch_out - o)))
assert torch.allclose(torch_out, o, atol=1e-2, rtol=0)
if __name__ == "__main__":
test_softmax()