[Gemini] rename ParamTracerWrapper -> RuntimeMemTracer (#2073)

This commit is contained in:
Jiarui Fang
2022-12-05 12:45:11 +08:00
committed by GitHub
parent 9f828ef36f
commit 223332ff7e
2 changed files with 30 additions and 16 deletions

View File

@@ -1,11 +1,15 @@
from copy import deepcopy
import numpy as np
import torch
from colossalai.gemini.memory_tracer.param_tracer_wrapper import ParamTracerWrapper
from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO
from colossalai.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
from colossalai.utils.model.colo_init_context import ColoInitContext
from tests.components_to_test import run_fwd_bwd
from tests.components_to_test.registry import non_distributed_component_funcs
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torch.half):
with torch.cuda.amp.autocast(enabled=enable_autocast):
if criterion:
@@ -16,9 +20,9 @@ def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torc
loss = loss.to(dtype)
model.backward(loss)
def run_param_wrapper_testing():
test_models = ['simple_net', 'repeated_computed_layers', 'nested_model']
for model_name in test_models:
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, _, _, criterion = get_components_func()
@@ -26,7 +30,8 @@ def run_param_wrapper_testing():
with ColoInitContext(device=torch.device('cpu')):
model = model_builder(checkpoint=False)
model = ParamTracerWrapper(model)
model_bk = deepcopy(model)
runtime_mem_tracer = RuntimeMemTracer(model)
for i, (data, label) in enumerate(train_dataloader):
if i > 1:
@@ -34,15 +39,17 @@ def run_param_wrapper_testing():
data = data.cuda()
label = label.cuda()
run_fwd_bwd(model, data, label, criterion, False)
run_fwd_bwd(runtime_mem_tracer, data, label, criterion, False)
cuda_non_model_data_list = np.array(GLOBAL_CUDA_MEM_INFO.non_model_data_list) / 1024 ** 2
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
torch.allclose(p1.to(torch.half), p2)
cuda_non_model_data_list = np.array(GLOBAL_CUDA_MEM_INFO.non_model_data_list) / 1024**2
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
# print(GLOBAL_CUDA_MEM_INFO.non_model_data_list)
del model
if __name__ == '__main__':
run_param_wrapper_testing()
run_param_wrapper_testing()