[Shardformer] Add parallel output for shardformer models(bloom, falcon) (#5702)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

* add parallel cross entropy output for falcon model & fix some typos in bloom.py

* fix module name error, self.model -> self.transformers in bloom, falcon model

* Fix the overflow bug of distributed cross entropy loss function when training with fp16

* add dtype to parallel cross entropy loss function

* fix dtype related typos adn prettify the loss.py

* fix grad dtype and update dtype mismatch error

* fix typo bugs
This commit is contained in:
Haze188
2024-05-21 11:07:13 +08:00
committed by GitHub
parent 9d83c6d715
commit 22ce873c3f
9 changed files with 230 additions and 17 deletions

View File

@@ -22,6 +22,7 @@ class DistCrossEntropy(Function):
ignore_index: int,
process_group: ProcessGroup,
vocab_size: int,
dtype=torch.float32,
):
r"""
Calculate the cross entropy loss before gather, the origin loss function is as follows:
@@ -34,7 +35,7 @@ class DistCrossEntropy(Function):
Args:
vocab_logits (:class:`torch.Tensor`): The logits of the vocabulary, shape is
[batch_size, seq_len, vocab_size]
labels (:class:`torch.Tensor`): The labels of the vocabulary, shape is
target (:class:`torch.Tensor`): The labels of the vocabulary, shape is
[batch_size, seq_len]
Returns:
@@ -86,7 +87,7 @@ class DistCrossEntropy(Function):
dist.all_reduce(pred_logits, op=dist.ReduceOp.SUM, group=process_group)
exp_logits = vocab_logits
torch.exp(vocab_logits, out=exp_logits)
sum_exp_logits = torch.sum(exp_logits, dim=-1)
sum_exp_logits = torch.sum(exp_logits, dim=-1, dtype=torch.float32)
dist.all_reduce(sum_exp_logits, op=dist.ReduceOp.SUM, group=process_group)
# calculate the loss
@@ -97,9 +98,10 @@ class DistCrossEntropy(Function):
loss = torch.sum(loss).div_(num_non_zero)
# calculate the softmax
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
exp_logits = exp_logits.div(sum_exp_logits.unsqueeze(dim=-1)).to(dtype)
exp_logits[target == ignore_index] = 0.0
ctx.save_for_backward(exp_logits, mask, masked_target_1d)
ctx.dtype = dtype
return loss
@@ -114,11 +116,11 @@ class DistCrossEntropy(Function):
partion_vocab_size = grad_logits.shape[-1]
grad_logits_2d = grad_logits.view(-1, partion_vocab_size)
update = 1.0 - mask.view(-1).float()
update = 1.0 - mask.view(-1).float().to(ctx.dtype)
grad_logits_2d[torch.arange(0, grad_logits_2d.shape[0]), masked_target_1d] -= update
grad_logits.mul_(grad_output.unsqueeze(dim=-1))
return grad_logits, None, None, None, None
return grad_logits, None, None, None, None, None
def cross_entropy_1d(
@@ -127,5 +129,6 @@ def cross_entropy_1d(
ignore_index: int = -100,
process_group: ProcessGroup = None,
vocab_size: int = None,
dtype: torch.dtype = None,
) -> torch.Tensor:
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group, vocab_size)
return DistCrossEntropy.apply(vocab_logits, labels, ignore_index, process_group, vocab_size, dtype)