[zero] fix error for BEiT models (#2169)

* [zero] fix error for BEiT models

* [ColoParameter] add unpack operation for tuple arguments

* fix bugs

* fix chunkv2 unit testing

* add assertion for gradient state
This commit is contained in:
HELSON
2022-12-26 15:03:54 +08:00
committed by GitHub
parent 4363ff3e41
commit 2458659919
7 changed files with 82 additions and 32 deletions

View File

@@ -82,16 +82,26 @@ class ColoParamOpHookManager:
@staticmethod
def pre_op(params: List[torch.Tensor], *args: Any) -> list:
ColoParamOpHookManager._trigger_pre_forward(params)
args_info = _get_colo_tensors_info(*args)
rets = PreFwdPostBwd.apply(params, *args)
return _update_colo_tensors(args_info, *rets)
grad_args, rear_args = _get_grad_args(*args)
colo_info = _get_colo_tensors_info(*grad_args)
rets = PreFwdPostBwd.apply(params, *grad_args)
update_args = _update_colo_tensors(colo_info, *rets)
if rear_args is None:
return update_args
else:
arg_zero = (tuple(update_args),)
return arg_zero + rear_args
@staticmethod
def post_op(params: List[torch.Tensor], arg: Any) -> Any:
ColoParamOpHookManager._trigger_post_forward(params)
arg_info = _get_colo_tensors_info(arg)
colo_info = _get_colo_tensors_info(arg)
ret = PostFwdPreBwd.apply(params, arg)
return _unpack_args(_update_colo_tensors(arg_info, ret))
res = _update_colo_tensors(colo_info, ret)
if len(res) == 1:
return res[0]
else:
return res
@staticmethod
def has_hook() -> bool:
@@ -103,7 +113,7 @@ class PreFwdPostBwd(torch.autograd.Function):
@staticmethod
def forward(ctx, params, *args):
ctx.params = params
return _unpack_args(args)
return args
@staticmethod
def backward(ctx, *grads):
@@ -124,10 +134,29 @@ class PostFwdPreBwd(torch.autograd.Function):
return (None,) + grads
def _unpack_args(args):
if len(args) == 1:
return args[0]
return args
def _is_grad_tensor(obj) -> bool:
if torch.is_tensor(obj):
if obj.grad_fn is not None or obj.requires_grad:
return True
return False
def _get_grad_args(*args):
# returns the identical args if there is a grad tensor
for obj in args:
if _is_grad_tensor(obj):
return args, None
# otherwise, the first arguement should be a tuple of grad tensors
# if there is no grad tensor, the backward of PreFwdPostBwd can't be triggered
arg_zero = args[0]
if not isinstance(arg_zero, tuple):
raise NotImplementedError("Some torch function is incompatible because of its complcated inputs.")
check_grad_flag = False
for obj in arg_zero:
check_grad_flag |= _is_grad_tensor(obj)
if not check_grad_flag:
raise NotImplementedError("Some torch function is incompatible because of its complcated inputs.")
return arg_zero, args[1:]
def _get_colo_tensors_info(*args) -> list: